ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications of the fermion vacuum term in the extended SU(3) Quark Meson model on compact stars properties

60   0   0.0 ( 0 )
 نشر من قبل Andreas Zacchi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of the fermion vacuum term in the SU(3) quark meson model on the equation of state and determine the vacuum parameters for various sigma meson masses. We examine its influence on the equation of state and on the resulting mass radius relations for compact stars. The tidal deformability $Lambda$ of the stars is studied and compared to the results of the mean field approximation. Parameter sets which fulfill the tidal deformability bounds of GW170817 together with the observed two solar mass limit turn out to be restricted to a quite small parameter range in the mean field approximation. The extended version of the model does not yield solutions fulfilling both constraints. Furthermore, no first order chiral phase transition is found in the extended version of the model, not allowing for the twin star solutions found in the mean field approximation.



قيم البحث

اقرأ أيضاً

The quark-meson model is investigated for the two- and three-flavor case extended by contributions of vector mesons under conditions encountered in core-collapse supernova matter. Typical temperature ranges, densities and electron fractions, as found in core-collapse supernova simulations, are studied by implementing charge neutrality and local beta-equilibrium with respect to weak interactions. Within this framework, we analyze the resulting phase diagram and equation of state (EoS) and investigate the impact of undetermined parameters of the model. The EoS turns out to be relatively independent on the entropy per baryon but there are significant changes when going from the two-flavor to the three-flavor case due to the nontrivial contribution from the strange quarks which stay massive even at high densities. While an increasing vector meson coupling constant leads to a substantial stiffening of the EoS, we find that the impact of changing the scalar meson mass is equally strong and results in a softening of the EoS for increasing values.
The recent observations of the massive pulsars PSR J1614-2230 and of PSR J0348+0432 with about two solar masses implies strong constraints on the properties of dense matter in the core of compact stars. Effective models of QCD aiming to describe neut ron star matter can thereby be considerably constrained. In this context, a chiral quark-meson model based on a SU(3) linear $sigma$-model with a vacuum pressure and vector meson exchange is discussed in this work. The impact of its various terms and parameters on the equation of state and the maximum mass of compact stars are delineated to check whether pure quark stars with two solar masses are feasible within this approach. Large vector meson coupling constant and a small vacuum pressure allow for maximum masses of two or more solar masses. However, pure quark stars made of absolutely stable strange quark matter, so called strange stars, turn out to be restricted to a quite small parameter range.
We explore the equation of state for nuclear matter in the quark-meson coupling model, including full Fock terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters appearing in the Fock terms which are not present at Hartree level. Because the model is based upon the in-medium modification of the quark structure of the bound hadrons, it can be applied without additional parameters to include hyperons and to calculate the equation of state of dense matter in beta-equilibrium. This leads naturally to a study of the properties of neutron stars, including their maximum mass, their radii and density profiles.
The equations of state for neutron matter, strange and non-strange hadronic matter in a chiral SU(3) quark mean field model are applied in the study of slowly rotating neutron stars and hadronic stars. The radius, mass, moment of inertia, and other p hysical quantities are carefully examined. The effect of nucleon crust for the strange hadronic star is exhibited. Our results show the rotation can increase the maximum mass of compact stars significantly. For big enough mass of pulsar which can not be explained as strange hadronic star, the theoretical approaches to increase the maximum mass are addressed.
We study the chiral condensates in neutron star matter from nuclear to quark matter domain. We describe nuclear matter with a parity doublet model (PDM), quark matter with the Nambu--Jona-Lasino (NJL) model, and a matter at the intermediate density b y interpolating nuclear and quark matter equations of state. The model parameters are constrained by nuclear physics and neutron star observations. Various condensates in the interpolated domain are estimated from the chemical potential dependence of the condensates at the boundaries of the interpolation. The use of the PDM with substantial chiral invariant mass ($m_0 gtrsim 500$ MeV, which is favored by the neutron star observations) predicts the mild chiral restoration, and the significant chiral condensate remains to baryon density $n_B sim 2-3n_0$ ($n_0simeq 0.16,{rm fm}^{-3}$: nuclear saturation density), smoothly approaching the NJL predictions for the color-flavor-locked phase at $n_B gtrsim 5n_0$. The same method is applied to estimate diquark condensates, number densities of up-, down- and strange-quarks, and the lepton fraction. In our descriptions the chiral restoration in the interpolated domain proceeds with two conceptually distinct chiral restoration effects; the first is associated with the positive scalar density in a nucleon, relevant in dilute regime, and the other primarily arises from the modification of the quark Dirac sea, which is triggered by the growth of the quark Fermi sea. We discuss several qualitative conjectures to interpolate the microphysics in nuclear and quark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا