ترغب بنشر مسار تعليمي؟ اضغط هنا

Achieving the Ultimate Scaling Limit for Nonequilibrium Green Functions Simulations

123   0   0.0 ( 0 )
 نشر من قبل Michael Bonitz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of strongly correlated fermions following an external excitation reveals extremely rich collective quantum effects. Examples are fermionic atoms in optical lattices, electrons in correlated materials, and dense quantum plasmas. Presently, the only quantum-dynamics approach that rigorously describes these processes in two and three dimensions is nonequilibrium Green functions (NEGF). However, NEGF simulations are computationally expensive due to their $T^3$ scaling with the simulation duration $T$. Recently, $T^2$ scaling was achieved with the generalized Kadanoff--Baym ansatz (GKBA) which has substantially extended the scope of NEGF simulations. Here we present a novel approach to GKBA-NEGF simulations that is of order $T$, and demonstrate its remarkable capabilities.



قيم البحث

اقرأ أيضاً

65 - J.-P. Joost , N. Schlunzen , 2020
The time evolution in quantum many-body systems after external excitations is attracting high interest in many fields. The theoretical modeling of these processes is challenging, and the only rigorous quantum-dynamics approach that can treat correlat ed fermions in two and three dimensions is nonequilibrium Green functions (NEGF). However, NEGF simulations are computationally expensive due to their $T^3$-scaling with the simulation duration $T$. Recently, $T^2$-scaling was achieved with the generalized Kadanoff--Baym ansatz (GKBA), for the second-order Born (SOA) selfenergy, which has substantially extended the scope of NEGF simulations. In a recent Letter [Schlunzen textit{et al.}, Phys. Rev. Lett. textbf{124}, 076601 (2020)] we demonstrated that GKBA-NEGF simulations can be efficiently mapped onto coupled time-local equations for the single-particle and two-particle Green functions on the time diagonal, hence the method has been called G1--G2 scheme. This allows one to perform the same simulations with order $T^1$-scaling, both for SOA and $GW$ selfenergies giving rise to a dramatic speedup. Here we present more details on the G1--G2 scheme, including derivations of the basic equations including results for a general basis, for Hubbard systems and for jellium. Also, we demonstrate how to incorporate initial correlations into the G1--G2 scheme. Further, the derivations are extended to a broader class of selfenergies, including the $T$ matrix in the particle--particle and particle--hole channels, and the dynamically screened-ladder approximation. Finally, we demonstrate that, for all selfenergies, the CPU time scaling of the G1--G2 scheme with the basis dimension, $N_b$, can be improved compared to our first report: the overhead compared to the original GKBA, is not more than an additional factor $N_b$.
The nonequilibrium dynamics of strongly-correlated fermions in lattice systems have attracted considerable interest in the condensed matter and ultracold atomic-gas communities. While experiments have made remarkable progress in recent years, there r emains a need for the further development of theoretical tools that can account for both the nonequilibrium conditions and strong correlations. For instance, time-dependent theoretical quantum approaches based on the density matrix renormalization group (DMRG) methods have been primarily applied to one-dimensional setups. Recently, two-dimensional quantum simulations of the expansion of fermions based on nonequilibrium Green functions (NEGF) have been presented [Schluenzen et al., Phys. Rev. B 93, 035107 (2016)] that showed excellent agreement with the experiments. Here we present an extensive comparison of the NEGF approach to numerically accurate DMRG results. The results indicate that NEGF are a reliable theoretical tool for weak to intermediate coupling strengths in arbitrary dimensions and make long simulations possible. This is complementary to DMRG simulations which are particularly efficient at strong coupling.
This article presents an overview on recent progress in the theory of nonequilibrium Green functions (NEGF). NEGF, presently, are the only textit{ab-initio} quantum approach that is able to study the dynamics of correlations for long times in two and three dimensions. However, until recently, NEGF simulations have mostly been performed with rather simple selfenergy approximations such as the second-order Born approximation (SOA). While they correctly capture the qualitative trends of the relaxation towards equilibrium, the reliability and accuracy of these NEGF simulations has remained open, for a long time. Here we report on recent tests of NEGF simulations for finite lattice systems against exact-diagonalization and density-matrix-renormalization-group benchmark data. The results confirm the high accuracy and predictive capability of NEGF simulations---provided selfenergies are used that go beyond the SOA and adequately include strong correlation and dynamical-screening effects. We present a selfcontained introduction to the theory of NEGF and give an overview on recent numerical applications to compute the ultrafast relaxation dynamics of correlated fermions. In the second part we give a detailed introduction to selfenergies beyond the SOA. Important examples are the third-order approximation, the GWAx, the TMA and the fluctuating-exchange approximation. We give a comprehensive summary of the explicit selfenergy expressions for a variety of systems of practical relevance, starting from the most general expressions and the Feynman diagrams, and including also the important cases of diagonal basis sets, the Hubbard model and the differences occuring for bosons and fermions. With these details, and information on the computational effort and scaling with the basis size and propagation duration, an easy use of these approximations in numerical applications is made possible.
The ultimate precision limit in estimating the Larmor frequency of $N$ unentangled rotating spins is well established, and is highly important for magnetometers, gyroscopes and many other sensors. However this limit assumes perfect, single addressing , measurements of the spins. This requirement is not practical in NMR spectroscopy, as well as other physical systems, where a weakly interacting external probe is used as a measurement device. Here we show that in the framework of quantum nano-NMR spectroscopy, in which these limitations are inherent, the ultimate precision limit is still achievable using control and a finely tuned measurement.
We extend finite-temperature tensor network methods to compute Matsubara imaginary-time correlation functions, building on the minimally entangled typical thermal states (METTS) and purification algorithms. While imaginary-time correlation functions are straightforward to formulate with these methods, care is needed to avoid convergence issues that would result from naive estimators. As a benchmark, we study the single-band Anderson impurity model, even though the algorithm is quite general and applies to lattice models. The special structure of the impurity model benchmark system and our choice of basis enable techniques such as reuse of high-probability METTS for increasing algorithm efficiency. The results are competitive with state-of-the-art continuous time Monte Carlo. We discuss the behavior of computation time and error as a function of the number of purified sites in the Hamiltonian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا