ترغب بنشر مسار تعليمي؟ اضغط هنا

Developing a Fine-Grained Corpus for a Less-resourced Language: the case of Kurdish

68   0   0.0 ( 0 )
 نشر من قبل Hossein Hassani
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Kurdish is a less-resourced language consisting of different dialects written in various scripts. Approximately 30 million people in different countries speak the language. The lack of corpora is one of the main obstacles in Kurdish language processing. In this paper, we present KTC-the Kurdish Textbooks Corpus, which is composed of 31 K-12 textbooks in Sorani dialect. The corpus is normalized and categorized into 12 educational subjects containing 693,800 tokens (110,297 types). Our resource is publicly available for non-commercial use under the CC BY-NC-SA 4.0 license.



قيم البحث

اقرأ أيضاً

Machine translation has been a major motivation of development in natural language processing. Despite the burgeoning achievements in creating more efficient machine translation systems thanks to deep learning methods, parallel corpora have remained indispensable for progress in the field. In an attempt to create parallel corpora for the Kurdish language, in this paper, we describe our approach in retrieving potentially-alignable news articles from multi-language websites and manually align them across dialects and languages based on lexical similarity and transliteration of scripts. We present a corpus containing 12,327 translation pairs in the two major dialects of Kurdish, Sorani and Kurmanji. We also provide 1,797 and 650 translation pairs in English-Kurmanji and English-Sorani. The corpus is publicly available under the CC BY-NC-SA 4.0 license.
144 - Sina Ahmadi , Mariam Masoud 2020
Machine translation is the task of translating texts from one language to another using computers. It has been one of the major tasks in natural language processing and computational linguistics and has been motivating to facilitate human communicati on. Kurdish, an Indo-European language, has received little attention in this realm due to the language being less-resourced. Therefore, in this paper, we are addressing the main issues in creating a machine translation system for the Kurdish language, with a focus on the Sorani dialect. We describe the available scarce parallel data suitable for training a neural machine translation model for Sorani Kurdish-English translation. We also discuss some of the major challenges in Kurdish language translation and demonstrate how fundamental text processing tasks, such as tokenization, can improve translation performance.
In this paper, we discuss the development of a multilingual annotated corpus of misogyny and aggression in Indian English, Hindi, and Indian Bangla as part of a project on studying and automatically identifying misogyny and communalism on social medi a (the ComMA Project). The dataset is collected from comments on YouTube videos and currently contains a total of over 20,000 comments. The comments are annotated at two levels - aggression (overtly aggressive, covertly aggressive, and non-aggressive) and misogyny (gendered and non-gendered). We describe the process of data collection, the tagset used for annotation, and issues and challenges faced during the process of annotation. Finally, we discuss the results of the baseline experiments conducted to develop a classifier for misogyny in the three languages.
Recent research has shown great progress on fine-grained entity typing. Most existing methods require pre-defining a set of types and training a multi-class classifier from a large labeled data set based on multi-level linguistic features. They are t hus limited to certain domains, genres and languages. In this paper, we propose a novel unsupervised entity typing framework by combining symbolic and distributional semantics. We start from learning general embeddings for each entity mention, compose the embeddings of specific contexts using linguistic structures, link the mention to knowledge bases and learn its related knowledge representations. Then we develop a novel joint hierarchical clustering and linking algorithm to type all mentions using these representations. This framework doesnt rely on any annotated data, predefined typing schema, or hand-crafted features, therefore it can be quickly adapted to a new domain, genre and language. Furthermore, it has great flexibility at incorporating linguistic structures (e.g., Abstract Meaning Representation (AMR), dependency relations) to improve specific context representation. Experiments on genres (news and discussion forum) show comparable performance with state-of-the-art supervised typing systems trained from a large amount of labeled data. Results on various languages (English, Chinese, Japanese, Hausa, and Yoruba) and domains (general and biomedical) demonstrate the portability of our framework.
Building effective neural machine translation (NMT) models for very low-resourced and morphologically rich African indigenous languages is an open challenge. Besides the issue of finding available resources for them, a lot of work is put into preproc essing and tokenization. Recent studies have shown that standard tokenization methods do not always adequately deal with the grammatical, diacritical, and tonal properties of some African languages. That, coupled with the extremely low availability of training samples, hinders the production of reliable NMT models. In this paper, using Fon language as a case study, we revisit standard tokenization methods and introduce Word-Expressions-Based (WEB) tokenization, a human-involved super-words tokenization strategy to create a better representative vocabulary for training. Furthermore, we compare our tokenization strategy to others on the Fon-French and French-Fon translation tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا