ترغب بنشر مسار تعليمي؟ اضغط هنا

IRS-Enhanced Wideband MU-MISO-OFDM Communication Systems

81   0   0.0 ( 0 )
 نشر من قبل Hongyu Li
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Intelligent reflecting surface (IRS) is considered as an enabling technology for future wireless communication systems since it can intelligently change the wireless environment to improve the communication performance. In this paper, an IRS-enhanced wideband multiuser multi-input single-output orthogonal frequency division multiplexing (MU-MISO-OFDM) system is investigated. We aim to jointly design the transmit beamformer and the reflection of IRS to maximize the average sum-rate over all subcarriers. With the aid of the relationship between sum-rate maximization and mean square error (MSE) minimization, an efficient joint beamformer and IRS design algorithm is developed. Simulation results illustrate that the proposed algorithm can offer significant average sum-rate enhancement, which confirms the effectiveness of the use of the IRS for wideband wireless communication systems.



قيم البحث

اقرأ أيضاً

83 - R. Liu , M. Li , Q. Liu 2019
Intelligent reflecting surfaces (IRSs) have emerged as a revolutionary solution to enhance wireless communications by changing propagation environment in a cost-effective and hardware-efficient fashion. In addition, symbol-level precoding (SLP) has a ttracted considerable attention recently due to its advantages in converting multiuser interference (MUI) into useful signal energy. Therefore, it is of interest to investigate the employment of IRS in symbol-level precoding systems to exploit MUI in a more effective way by manipulating the multiuser channels. In this paper, we focus on joint symbol-level precoding and reflecting designs in IRS-enhanced multiuser multiple-input single-output (MU-MISO) systems. Both power minimization and quality-of-service (QoS) balancing problems are considered. In order to solve the joint optimization problems, we develop an efficient iterative algorithm to decompose them into separate symbol-level precoding and block-level reflecting design problems. An efficient gradient-projection-based algorithm is utilized to design the symbol-level precoding and a Riemannian conjugate gradient (RCG)-based algorithm is employed to solve the reflecting design problem. Simulation results demonstrate the significant performance improvement introduced by the IRS and illustrate the effectiveness of our proposed algorithms.
A novel multiple-input multiple-output (MIMO) dual-function radar communication (DFRC) system is proposed. The system transmits wideband, orthogonal frequency division multiplexing (OFDM) waveforms using a small subset of the available antennas in ea ch channel use. The proposed system assigns most carriers to antennas in a shared fashion, thus efficiently exploiting the available communication bandwidth, and a small set of subcarriers to active antennas in an exclusive fashion (private subcarriers). A novel target estimation approach is proposed to overcome the coupling of target parameters introduced by subcarrier sharing. The obtained parameters are further refined via an iterative approach, which formulates a sparse signal recovery problem based on the data of the private subcarriers. The system is endowed with beamforming capability, via waveform precoding and antenna selection. The precoding and antenna selection matrices are optimally co-designed to meet a joint sensing-communication system performance. The sparsity of the transmit array is exploited at the communication receiver to recover the transmitted information. The use of shared subcarriers enables high communication rate, while the sparse transmit array maintains low system hardware cost. The sensing problem is formulated by taking into account frequency selective fading, and a method is proposed to estimate the channel coefficients during the sensing process. The functionality of the proposed system is demonstrated via simulations.
112 - Yanan Ma , Rang Liu , Yang Liu 2021
Reconfigurable intelligent surfaces (RISs) have been deemed as one of potential components of future wireless communication systems because they can adaptively manipulate the wireless propagation environment with low-cost passive devices. However, du e to double fading effect, the passive RIS can offer sufficient signal strength only when receivers are nearby and located at the same side as the incident signals. Moreover, RIS cannot provide service coverage for the users at the back side of it. In this paper we introduce a novel reflection and relay dual-functional RIS architecture, which can simultaneously realize passive reflection and active relay functionalities to enhance the coverage. The problem of joint transmit beamforming and dual-functional RIS design is investigated to maximize the achievable sum-rate of a multiuser multiple-input single-output (MU-MISO) system. Based on fractional programming (FP) theory and majorization-minimization (MM) technique, we propose an efficient iterative transmit beamforming and RIS design algorithm. Simulation results demonstrate the superiority of the introduced dual-functional RIS architecture and the effectiveness of the proposed algorithm.
The intelligent reflective surface (IRS) technology has received many interests in recent years, thanks to its potential uses in future wireless communications, in which one of the promising use cases is to widen coverage, especially in the line-of-s ight-blocked scenarios. Therefore, it is critical to analyze the corresponding coverage probability of IRS-aided communication systems. To our best knowledge, however, previous works focusing on this issue are very limited. In this paper, we analyze the coverage probability under the Rayleigh fading channel, taking the number and size of the array elements into consideration. We first derive the exact closed-form of coverage probability for the unit element. Afterward, with the method of moment matching, the approximation of the coverage probability can be formulated as the ratio of upper incomplete Gamma function and Gamma function, allowing an arbitrary number of elements. Finally, we comprehensively evaluate the impacts of essential factors on the coverage probability, such as the coefficient of fading channel, the number and size of the element, and the angle of incidence. Overall, the paper provides a succinct and general expression of coverage probability, which can be helpful in the performance evaluation and practical implementation of the IRS.
71 - Dongyang Xu , Pinyi Ren , 2018
Due to the publicly-known deterministic character- istic of pilot tones, pilot-aware attack, by jamming, nulling and spoofing pilot tones, can significantly paralyze the uplink channel training in large-scale MISO-OFDM systems. To solve this, we in t his paper develop an independence-checking coding based (ICCB) uplink training architecture for one-ring scattering scenarios allowing for uniform linear arrays (ULA) deployment. Here, we not only insert randomized pilots on subcarriers for channel impulse response (CIR) estimation, but also diversify and encode subcarrier activation patterns (SAPs) to convey those pilots simultaneously. The coded SAPs, though interfered by arbitrary unknown SAPs in wireless environment, are qualified to be reliably identified and decoded into the original pilots by checking the hidden channel independence existing in subcarri- ers. Specifically, an independence-checking coding (ICC) theory is formulated to support the encoding/decoding process in this architecture. The optimal ICC code is further developed for guaranteeing a well-imposed estimation of CIR while maximizing the code rate. Based on this code, the identification error probability (IEP) is characterized to evaluate the reliability of this architecture. Interestingly, we discover the principle of IEP reduction by exploiting the array spatial correlation, and prove that zero-IEP, i.e., perfect reliability, can be guaranteed under continuously-distributed mean angle of arrival (AoA). Besides this, a novel closed form of IEP expression is derived in discretely- distributed case. Simulation results finally verify the effectiveness of the proposed architecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا