ﻻ يوجد ملخص باللغة العربية
Understanding the sleep quality and architecture is essential to human beings health, which is usually represented using multiple sleep stages. A standard sleep stage determination requires Electroencephalography (EEG) signals during the expensive and labor-intensive Polysomnography (PSG) test. To overcome this inconvenience, cardiorespiratory signals are proposed for the same purpose because of the easy and comfortable acquisition by simplified devices. In this paper, we leverage our low-cost wearable multi-sensor system to acquire the cardiorespiratory signals from subjects. Three novel features are designed during the feature extraction. We then apply a Bi-directional Recurrent Neural Network architecture with Long Short-term Memory (BLSTM) to predict the four-class sleep stages. Our prediction accuracy is 80.25% on a large public dataset (417 subjects), and 80.75% on our 32 enrolled subjects, respectively. Our results outperform the previous works which either used small data sets and had the potential over-fitting issues, or used the conventional machine learning methods on large data sets.
Sleep stage classification is essential for sleep assessment and disease diagnosis. Although previous attempts to classify sleep stages have achieved high classification performance, several challenges remain open: 1) How to effectively utilize time-
Approximately, 50 million people in the world are affected by epilepsy. For patients, the anti-epileptic drugs are not always useful and these drugs may have undesired side effects on a patients health. If the seizure is predicted the patients will h
Objective: Sleep related respiratory abnormalities are typically detected using polysomnography. There is a need in general medicine and critical care for a more convenient method to automatically detect sleep apnea from a simple, easy-to-wear device
This study presents a novel method to recognize human physical activities using CNN followed by LSTM. Achieving high accuracy by traditional machine learning algorithms, (such as SVM, KNN and random forest method) is a challenging task because the da
Histopathological image analysis is an essential process for the discovery of diseases such as cancer. However, it is challenging to train CNN on whole slide images (WSIs) of gigapixel resolution considering the available memory capacity. Most of the