ﻻ يوجد ملخص باللغة العربية
The Polarized Atomic Hydrogen Gas Jet Target polarimeter is employed by the Relativistic Heavy Ion Collider (RHIC) to measure the absolute polarization of each colliding proton beam. Polarimeter detectors and data acquisition were upgraded in 2015 to increase solid angle, energy range and energy resolution. These upgrades and advanced systematic error analysis along with improved beam intensity and polarization in RHIC runs 2015 ($E_textrm{beam}=100,text{GeV}$) and 2017 ($255,text{GeV}$) allowed us to greatly reduce the statistical and systematic uncertainties for elastic spin asymmetries, $A_N(t)$ and $A_NN(t)$, in the Coulomb-nuclear interference momentum transfer range $0.0013<-t<0.018,text{GeV}^2$. For the first time hadronic single spin-flip $r_5$ and double spin-flip $r_2$ amplitude parameters were reliably isolated at these energies and momentum transfers. Measurements at two beam energies enable a separation of Pomeron and Regge pole contributions to $r_5(s)$ and $r_2(s)$, indicating that the spin component may persist at high energies.
High precision vector and tensor analyzing powers of elastic deuteron-proton d+p scattering have been measured at intermediate energies to investigate effects of three-nucleon forces (3NF). Angular distribution in the range of 70-120 degree in the ce
A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of t
The single transverse spin asymmetry, A_N, of the p-carbon elastic scattering process in the Coulomb Nuclear Interference (CNI) region was measured using an ultra thin carbon target and polarized proton beam in the Relativistic Heavy Ion Collider (RH
We report a high precision measurement of the transverse single spin asymmetry $A_N$ at the center of mass energy $sqrt{s}=200$ GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The $A_N$ was measured in the four-momentum transf
We study the single-spin asymmetry, $A_N(t)$, arising from Coulomb-nuclear interference (CNI) at small 4-momentum transfer squared, $-t=q^2$, aiming at explanation of the recent data from the PHENIX experiment at RHIC on polarized proton-nucleus scat