ﻻ يوجد ملخص باللغة العربية
Taking $mathbf{O}(D,D)$ covariant field variables as its truly fundamental constituents, Double Field Theory can accommodate not only conventional supergravity but also non-Riemannian gravities that may be classified by two non-negative integers, $(n,bar{n})$. Such non-Riemannian backgrounds render a propagating string chiral and anti-chiral over $n$ and $bar{n}$ dimensions respectively. Examples include, but are not limited to, Newton--Cartan, Carroll, or Gomis--Ooguri. Here we analyze the variational principle with care for a generic $(n,bar{n})$ non-Riemannian sector. We recognize a nontrivial subtlety for ${nbar{n} eq 0}$ that infinitesimal variations generically include those which change $(n,bar{n})$. This seems to suggest that the various non-Riemannian gravities should better be identified as different solution sectors of Double Field Theory rather than viewed as independent theories. Separate verification of our results as string worldsheet beta-functions may enlarge the scope of the string landscape far beyond Riemann.
Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry -- not only globally (`non-geometry), but even locally (`non-Riemannian). In this work
We construct a double field theory coupled to the fields present in Vasilievs equations. Employing the semi-covariant differential geometry, we spell a functional in which each term is completely covariant with respect to $mathbf{O}(4,4)$ T-duality,
In the AdS$_3$/CFT$_2$ correspondence, we find some conformal field theory (CFT) states that have no bulk description by the Ba~nados geometry. We elaborate the constraints for a CFT state to be geometric, i.e., having a dual Ba~nados metric, by comp
We propose a novel Kaluza-Klein scheme which assumes the internal space to be maximally non-Riemannian, meaning that no Riemannian metric can be defined for any subspace. Its description is only possible through Double Field Theory but not within sup
In a completely systematic and geometric way, we derive maximal and half-maximal supersymmetric gauged double field theories in lower than ten dimensions. To this end, we apply a simple twisting ansatz to the $D=10$ ungauged maximal and half-maximal