ﻻ يوجد ملخص باللغة العربية
The deuterium fractionation of water can serve as a tracer for the chemical and physical evolution of water during star formation and can constrain the origin of water in Solar System bodies. We determine the HDO/H$_2$O ratio in the inner warm gas toward three low-mass Class 0 protostars selected to be in isolated cores, i.e., not associated with any cloud complexes. Previous sources for which the HDO/H$_2$O ratio have been established were all part of larger star-forming complexes. Targeting these isolated protostars allows comparison of the water chemistry in isolated and clustered regions to determine the influence of local cloud environment. We present ALMA observations of the HDO $3_{1,2}$-$2_{2,1}$ and $2_{1,1}$-$2_{1,2}$ transitions at 225.897 GHz and 241.562 GHz along with the H$_2^{18}$O $3_{1,3}$-$2_{2,0}$ transition at 203.407 GHz. The high angular resolution (0farcs3-1farcs3) allow the study of the inner warm envelope gas. Model-independent estimates for the HDO/H$_2$O ratios are obtained and compared with previous determinations in the warm gas toward low-mass protostars. We detect the targeted water transitions toward the three sources with S/N > 5. We determine the HDO/H$_2$O ratio toward L483, B335 and BHR71-IRS1 to be ($2.2pm0.4$)$times 10^{-3}$, ($1.7pm0.3$)$times 10^{-3}$, and ($1.8pm0.4$)$times 10^{-3}$, respectively, assuming $T_mathrm{ex} = 124$ K. The degree of water deuteration of these isolated protostars are a factor of 2-4 higher relative to Class 0 protostars that are members of known nearby clustered star-forming regions. The results indicate that the water deuterium fractionation is influenced by the local cloud environment. This effect can be explained by variations in either collapse timescales or temperatures, which depends on local cloud dynamics and could provide a new method to decipher the history of young stars.
Context. Millimetric observations have measured high degrees of molecular deuteration in several species seen around low-mass protostars. The Herschel Space Telescope, launched in 2009, is now providing new measures of the deuterium fractionation of
We present the results of formaldehyde and methanol deuteration measurements towards the Class I low-mass protostar SVS13-A, in the framework of the IRAM 30-m ASAI (Astrochemical Surveys At IRAM) project. We detected emission lines of formaldehyde, m
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 1.1 mm dust continuum and CO 2-1 emission toward six dense cores within the Ophiuchus molecular cloud. We detect compact, sub-arcsecond continuum structures toward three t
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of multiple protostar systems in the Perseus molecular cloud previously detected by the Karl G. Jansky Very Large Array (VLA). We observed 17 close ($<$600~AU separation) mul
Young stars exhibit variability due to changes in the gas accretion rate onto them, an effect that should be quite significant in the early stages of their formation. As protostars are embedded within their natal cloud, this variability may only be i