ﻻ يوجد ملخص باللغة العربية
We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high resolution, three-dimensional {sc arepo} simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM) we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star-formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.
To investigate how molecular clouds react to different environmental conditions at a galactic scale, we present a catalogue of giant molecular clouds resolved down to masses of $sim 10$~M$_{odot}$ from a simulation of the entire disc of an interactin
We present a suite of three-dimensional, high-resolution hydrodynamic simulations that follow the evolution of a massive (10^7 M_sun) pressure confined, star-forming neutral gas cloud moving through a hot intra-cluster medium (ICM). The main goal of
We present deep observations of a $z=1.4$ massive, star-forming galaxy in molecular and ionized gas at comparable spatial resolution (CO 3-2, NOEMA; H$alpha$, LBT). The kinematic tracers agree well, indicating that both gas phases are subject to the
Using the PHANGS-ALMA CO (2-1) survey, we characterize molecular gas properties on ${sim}$100 pc scales across 102,778 independent sightlines in 70 nearby galaxies. This yields the best synthetic view of molecular gas properties on cloud scales acros
[Abridged] We combine new CO(1-0) line observations of 24 intermediate redshift galaxies (0.03 < z < 0.28) along with literature data of galaxies at 0<z<4 to explore scaling relations between the dust and gas content using PAH 6.2 $mu$m ($L_{6.2}$),