ﻻ يوجد ملخص باللغة العربية
The spin Hall effect (SHE) is an important spintronics phenomenon, which allows transforming a charge current into a spin current and vice versa without the use of magnetic materials or magnetic fields. To gain new insight into the physics of the SHE and to identify materials with a substantial spin Hall conductivities (SHC), we performed high-precision, high-throughput ab initio electronic structure calculations of the intrinsic SHC for over 20,000 non-magnetic crystals. The calculations reveal a strong and unexpected relation of the magnitude of the SHC with the crystalline symmetry, which we show exists because large SHC is typically associated with mirror symmetry protected nodal lines in the band structure. From the new developed database, we identify new promising materials. This includes eleven materials with a SHC comparable or even larger than that the up to now record Pt as well as materials with different types of spin currents, which could allow for new types of spin-obitronics devices.
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined us
The discoveries of intrinsically magnetic topological materials, including semimetals with a large anomalous Hall effect and axion insulators, have directed fundamental research in solid-state materials. Topological quantum chemistry has enabled the
A method is proposed to study the finite-temperature behaviour of small magnetic clusters based on solving the stochastic Landau-Lifshitz-Gilbert equations, where the effective magnetic field is calculated directly during the solution of the dynamica
Nitrogen-doped carbon nanotubes can provide reactive sites on the porphyrin-like defects. Its well known that many porphyrins have transition metal atoms, and we have explored transition metal atoms bonded to those porphyrin-like defects in N-doped c
While the ongoing search to discover new high-entropy systems is slowly expanding beyond metals, a rational and effective method for predicting in silico the solid solution forming ability of multi-component systems remains yet to be developed. In th