ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving the Crab pulsar wind nebula at teraelectronvolt energies

137   0   0.0 ( 0 )
 نشر من قبل David Berge
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Crab nebula is one of the most studied cosmic particle accelerators, shining brightly across the entire electromagnetic spectrum up to very high-energy gamma rays. It is known from radio to gamma-ray observations that the nebula is powered by a pulsar, which converts most of its rotational energy losses into a highly relativistic outflow. This outflow powers a pulsar wind nebula (PWN), a region of up to 10~light-years across, filled with relativistic electrons and positrons. These particles emit synchrotron photons in the ambient magnetic field and produce very high-energy gamma rays by Compton up-scattering of ambient low-energy photons. While the synchrotron morphology of the nebula is well established, it was up to now not known in which region the very high-energy gamma rays are emitted. Here we report that the Crab nebula has an angular extension at gamma-ray energies of 52 arcseconds (assuming a Gaussian source width), significantly larger than at X-ray energies. This result closes a gap in the multi-wavelength coverage of the nebula, revealing the emission region of the highest energy gamma rays. These gamma rays are a new probe of a previously inaccessible electron and positron energy range. We find that simulations of the electromagnetic emission reproduce our new measurement, providing a non-trivial test of our understanding of particle acceleration in the Crab nebula.



قيم البحث

اقرأ أيضاً

Aims: To investigate the extension of the very-high-energy spectral tail of the Crab pulsar at energies above 400 GeV. Methods: We analyzed $sim$320 hours of good quality data of Crab with the MAGIC telescope, obtained from February 2007 until April 2014. Results: We report the most energetic pulsed emission ever detected from the Crab pulsar reaching up to 1.5 TeV. The pulse profile shows two narrow peaks synchronized with the ones measured in the GeV energy range. The spectra of the two peaks follow two different power-law functions from 70 GeV up to 1.5 TeV and connect smoothly with the spectra measured above 10 GeV by the Large Area Telescope (LAT) on board of the Fermi satellite. When making a joint fit of the LAT and MAGIC data, above 10 GeV, the photon indices of the spectra differ by 0.5$pm$0.1. Conclusions: We measured with the MAGIC telescopes the most energetic pulsed photons from a pulsar to date. Such TeV pulsed photons require a parent population of electrons with a Lorentz factor of at least $5times 10^6$. These results strongly suggest IC scattering off low energy photons as the emission mechanism and a gamma-ray production region in the vicinity of the light cylinder.
We observed the Crab pulsar in October 2008 at the Copernico Telescope in Asiago - Cima Ekar with the optical photon counter Aqueye (the Asiago Quantum Eye) which has the best temporal resolution and accuracy ever achieved in the optical domain (hund reds of picoseconds). Our goal was to perform a detailed analysis of the optical period and phase drift of the main peak of the Crab pulsar and compare it with the Jodrell Bank ephemerides. We determined the position of the main peak using the steepest zero of the cross-correlation function between the pulsar signal and an accurate optical template. The pulsar rotational period and period derivative have been measured with great accuracy using observations covering only a 2 day time interval. The error on the period is 1.7 ps, limited only by the statistical uncertainty. Both the rotational frequency and its first derivative are in agreement with those from the Jodrell Bank radio ephemerides archive. We also found evidence of the optical peak leading the radio one by ~230 microseconds. The distribution of phase-residuals of the whole dataset is slightly wider than that of a synthetic signal generated as a sequence of pulses distributed in time with the probability proportional to the pulse shape, such as the average count rate and background level are those of the Crab pulsar observed with Aqueye. The counting statistics and quality of the data allowed us to determine the pulsar period and period derivative with great accuracy in 2 days only. The time of arrival of the optical peak of the Crab pulsar leads the radio one in agreement with what recently reported in the literature. The distribution of the phase residuals can be approximated with a Gaussian and is consistent with being completely caused by photon noise (for the best data sets).
We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures - two $approx 0.2 d_{250}$ pc long lateral tails and a segmented axial tail of $approx 0.05 d_{250}$ pc length, where $d_{250}=d/(250 {rm pc})$. The photon indices of the power law spectra of the lateral tails, $Gamma approx 1$, are significantly harder than those of the pulsar ($Gamma approx 1.5$) and the axial tail ($Gamma approx 1.6$). There is no significant diffuse X-ray emission between the lateral tails -- the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indication of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.
72 - Roberta Zanin 2017
The last six years have witnessed major revisions of our knowledge about the Crab Pulsar. The consensus scenario for the origin of the high-energy pulsed emission has been challenged with the discovery of a very-high-energy power law tail extending u p to 400 GeV, above the expected spectral cut off at a few GeV. Now, new measurements obtained by the MAGIC collaboration extend the energy spectrum of the Crab Pulsar even further, on the TeV regime. Above 400 GeV the pulsed emission comes mainly from the inter-pulse, which becomes more prominent with energy due to a harder spectral index. These findings require gamma-ray production via inverse Compton scattering close to or beyond the light cylinder radius by an underlying particle population with Lorentz factors greater than 5 times 106. We will present those new results and discuss the implications in our current knowledge concerning pulsar environments.
The most numerous source class that emerged from the H.E.S.S. Galactic Plane Survey are Pulsar Wind Nebulae (PWNe). The 2013 reanalysis of this survey, undertaken after almost 10 years of observations, provides us with the most sensitive and most com plete census of gamma-ray PWNe to date. In addition to a uniform analysis of spectral and morphological parameters, for the first time also flux upper limits for energetic young pulsars were extracted from the data. We present a discussion of the correlation between energetic pulsars and TeV objects, and their respective properties. We will put the results in context with the current theoretical understanding of PWNe and evaluate the plausibility of previously non-established PWN candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا