ﻻ يوجد ملخص باللغة العربية
In the paper Linear time algorithm to cover and hit a set of line segments optimally by two axis-parallel squares, TCS Volume 769 (2019), pages 63--74, the LHIT problem is proposed as follows: For a given set of non-intersecting line segments ${cal L} = {ell_1, ell_2, ldots, ell_n}$ in $I!!R^2$, compute two axis-parallel congruent squares ${cal S}_1$ and ${cal S}_2$ of minimum size whose union hits all the line segments in $cal L$, and a linear time algorithm was proposed. Later it was observed that the algorithm has a bug. In this corrigendum, we corrected the algorithm. The time complexity of the corrected algorithm is $O(n^2)$.
This paper discusses the problem of covering and hitting a set of line segments $cal L$ in ${mathbb R}^2$ by a pair of axis-parallel squares such that the side length of the larger of the two squares is minimized. We also discuss the restricted versi
We study three covering problems in the plane. Our original motivation for these problems come from trajectory analysis. The first is to decide whether a given set of line segments can be covered by up to four unit-sized, axis-parallel squares. The s
We construct a family of 17 disjoint axis-parallel line segments in the plane that do not admit a circumscribing polygon.
Deciding whether a family of disjoint axis-parallel line segments in the plane can be linked into a simple polygon (or a simple polygonal chain) by adding segments between their endpoints is NP-hard.
We study the classic set cover problem from the perspective of sub-linear algorithms. Given access to a collection of $m$ sets over $n$ elements in the query model, we show that sub-linear algorithms derived from existing techniques have almost tight