ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Schwinger pair production on the evolution of the Hubble constant in de~Sitter spacetime

192   0   0.0 ( 0 )
 نشر من قبل Ehsan Bavarsad
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this proceeding we consider a massive charged scalar field in a uniform electric field background in a de~Sitter spacetime (dS). We compute the in-vacuum expectation value of the trace of the energy-momentum tensor for the created Schwinger pairs, and using adiabatic subtraction scheme the trace is regularized. The effect of the Schwinger pair creation on the evolution of the Hubble constant is investigated. We find that the production of the semiclassical pairs leads to a decay of the Hubble constant. Whereas, the production of a light scalar field in the weak electric field regime leads to a superacceleration phenomenon.



قيم البحث

اقرأ أيضاً

We investigate the effect of a constant magnetic field background on the scalar QED pair production in a four-dimensional de Sitter spacetime ($dsf$). We have obtained the pair production rate which agrees with the known Schwinger result in the limit of Minkowski spacetime and with the Hawking radiation in de Sitter spacetime (dS) in the zero electric field limit. Our results describe how the cosmic magnetic field affects the pair production rate in cosmological setups. In addition, using the zeta function regularization scheme we have calculated the induced current and examined the effect of a magnetic field on the vacuum expectation value of the current operator. We find that, in the case of a strong electromagnetic background the current responds as $Ecdot B$, while in the infrared regime, it responds as $B/E$, which leads to a phenomenon of infrared hyperconductivity. These results of the induced current have important applications for the cosmic magnetic field evolution.
We consider particle production in $1+1$ dimensional thermal Anti-de Sitter space under the influence of a constant electric field. The vacuum-persistence amplitude is given by a non-relativistic tunnelling instanton once we interpret the system as b eing governed by an equivalent non-relativistic Schrodinger equation. Working in the WKB approximation, we calculate the tunnelling rate in anti de Sitter space at finite temperature and observe that the particle production rate is enhanced. Additionally, it is observed that there is a critical temperature beyond which the production rate is affected by the thermal environment. We claim this to be a new result for Anti-de Sitter space in the semi-classical approximation.
106 - E. T. Akhmedov , Ph. Burda 2012
We propose an ansatz which solves the Dyson-Schwinger equation for the real scalar fields in Poincare patch of de Sitter space in the IR limit. The Dyson-Schwinger equation for this ansatz reduces to the kinetic equation, if one considers scalar fiel ds from the principal series. Solving the latter equation we show that under the adiabatic switching on and then off the coupling constant the Bunch-Davies vacuum relaxes in the future infinity to the state with the flat Gibbons-Hawking density of out-Jost harmonics on top of the corresponding de Sitter invariant out-vacuum.
We study the pair production of charged scalar particles from the five-dimensional near extremal Reissner- Nordstrom-Anti de Sitter (RN-AdS5) black hole. The pair production rate and the absorption cross section ratio in the full spacetime are obtain ed and are shown to have proportional relation with their counterparts in the near horizon region. In addition, the holographic descriptions of the pair production both in the IR CFT in the near horizon region and the UV CFT at the asymptotic spatial boundary of the RN-AdS5 black hole are analyzed in the AdS2/CFT1and AdS5/CFT4correspondences, respectively. This work gives a complete description of scalar pair production in the near extremal RN-AdS5black hole.
We study the vacuum polarisation effects of the Dirac fermionic field induced by a pointlike global monopole located in the cosmological de Sitter spacetime. First we derive the four orthonormal Dirac modes in this background. Using these modes, we t hen compute the fermionic condensate, $langle 0| overline{Psi} Psi | 0rangle$, as well as the vacuum expectation value of the energy-momentum tensor for a massive Dirac field. We have used the Abel-Plana summation formula in order to extract the pure global monopole contribution to these quantities and have investigated their variations numerically with respect to suitable parameters. Also in particular, by taking the massless limit for the components of the energy-momentum tensor we show that the global monopole cannot induce any contribution to the trace anomaly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا