ترغب بنشر مسار تعليمي؟ اضغط هنا

Collusion of Interactions and Disorder at the Superfluid-Insulator Transition: A Dirty 2d Quantum Critical Point

234   0   0.0 ( 0 )
 نشر من قبل Hart Goldman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the stability of the Wilson-Fisher fixed point of the quantum $mathrm{O}(2N)$ vector model to quenched disorder in the large-$N$ limit. While a random mass is strongly relevant at the Gaussian fixed point, its effect is screened by the strong interactions of the Wilson-Fisher fixed point. This enables a perturbative renormalization group study of the interplay of disorder and interactions about this fixed point. We show that, in contrast to the spiralling flows obtained in earlier double-$epsilon$ expansions, the theory flows directly to a quantum critical point characterized by finite disorder and interactions. The critical exponents we obtain for this transition are in remarkable agreement with numerical studies of the superfluid-Mott glass transition. We additionally discuss the stability of this fixed point to scalar and vector potential disorder and use proposed boson-fermion dualities to make conjectures regarding the effects of weak disorder on dual Abelian Higgs and Chern-Simons-Dirac fermion theories when $N=1$.



قيم البحث

اقرأ أيضاً

365 - B. Hosseinkhani , J. Zaanen 2004
Using recent insights obtained in heavy fermion physics on the thermodynamic singularity structure associated with quantum phase transitions, we present here an experimental strategy to establish if the zero-temperature transition in the disordered t wo dimensional gas is a real quantum phase transition. We derive a overcomplete set of scaling laws relating the density and temperature dependence of the chemical potential and the effective mass, which are in principle verifyable by experiment.
225 - S. Kettemann , E. R. Mucciolo , 2009
It is well-known that magnetic impurities can change the symmetry class of disordered metallic systems by breaking spin and time-reversal symmetry. At low temperature these symmetries can be restored by Kondo screening. It is also known that at the A nderson metal-insulator transition, wave functions develop multifractal fluctuations with power law correlations. Here, we consider the interplay of these two effects. We show that multifractal correlations open local pseudogaps at the Fermi energy at some random positions in space. When dilute magnetic impurities are at these locations, Kondo screening is strongly suppressed. We find that when the exchange coupling J is smaller than a certain value J*, the metal-insulator transition point extends to a critical region in the disorder strength parameter and to a band of critical states. The width of this critical region increases with a power of the concentration of magnetic impurities.
146 - C. Meldgin , U. Ray , P. Russ 2015
We probe the transition between superfluid and Bose glass phases using quantum quenches of disorder in an ultracold atomic lattice gas that realizes the disordered Bose-Hubbard model. Measurements of excitations generated by the quench exhibit thresh old behavior in the disorder strength indicative of a phase transition. Ab-initio quantum Monte Carlo simulations confirm that the appearance of excitations coincides with the equilibrium superfluid--Bose-glass phase boundary at different lattice potential depths. By varying the quench time, we demonstrate the disappearance of an adiabatic timescale compared with microscopic parameters in the BG regime.
Disordered non-interacting systems in sufficiently high dimensions have been predicted to display a non-Anderson disorder-driven transition that manifests itself in the critical behaviour of the density of states and other physical observables. Recen tly the critical properties of this transition have been extensively studied for the specific case of Weyl semimetals by means of numerical and renormalisation-group approaches. Despite this, the values of the critical exponents at such a transition in a Weyl semimetal are currently under debate. We present an independent calculation of the critical exponents using a two-loop renormalisation-group approach for Weyl fermions in $2-varepsilon$ dimensions and resolve controversies currently existing in the literature.
In this paper we investigate the quantum phase transition from magnetic Bose glass to magnetic Bose-Einstein condensation induced by a magnetic field in NiCl2.4SC(NH2)2 (dichloro-tetrakis-thiourea-Nickel, or DTN), doped with Br (Br-DTN) or site dilut ed. Quantum Monte Carlo simulations for the quantum phase transition of the model Hamiltonian for Br-DTN, as well as for site-diluted DTN, are consistent with conventional scaling at the quantum critical point and with a critical exponent z verifying the prediction z=d; moreover the correlation length exponent is found to be nu = 0.75(10) and the order parameter exponent to be beta = 0.95(10). We investigate the low-temperature thermodynamics at the quantum critical field of Br-DTN both numerically and experimentally, and extract the power-law behavior of the magnetization and of the specific heat. Our results for the exponents of the power laws, as well as previous results for the scaling of the critical temperature to magnetic ordering with the applied field, are incompatible with the conventional crossover-scaling Ansatz proposed by Fisher et al., [Phys. Rev. B 40, 546 (1989)], but they can all be reconciled within a phenomenological Ansatz in the presence of a dangerously irrelevant operator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا