ترغب بنشر مسار تعليمي؟ اضغط هنا

A first quantification of the effects of absorption for HI Intensity Mapping experiments

115   0   0.0 ( 0 )
 نشر من قبل Sambit Roychowdhury
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HI Intensity Mapping (IM) will be used to do precision cosmology using many existing and upcoming radio observatories. The signal will be contaminated due to absorption, the largest component of which will be the flux absorbed by the HI emitting sources themselves from the flux incident on them from background radio continuum sources. We, for the first time, provide a quantitative estimate of the magnitude of the absorbed flux compared to the emitted HI flux for various voxels placed at redshifts between 0.1 and 2.5. We use a cosmological sky simulation of the atomic HI emission line, and sum over the emitted and absorbed fluxes for all sources within voxels at different redshifts. For estimating the absorbed flux we use various relations based on existing observations as well as simulations. We find that for the same co-moving volume of sky, the HI emission falls off quickly with increasing redshift, while the absorption varies much less with redshift and follows the redshift distribution of faint sources that dominate the number counts of radio continuum sources. This results in the fraction of absorption compared to emission to be negligible in the nearby Universe (up to a redshift of ~0.5), increases to about 10% at a redshift of 1, and continues to increase to about 30% up to a redshift of 2.5. These numbers can vary significantly due to the uncertainties on the exact forms of the various relations used, the largest variation being driven by the uncertainty on the number counts of radio continuum sources at sub-mJy flux densities. Absorption of flux incident from background radio continuum sources might become an important contaminant to HI IM signals beyond redshifts of 0.5, and needs to be quantified more accurately using inputs from upcoming deep high resolution surveys of radio continuum sources, HI absorption, and HI emission with the SKA and its precursors.



قيم البحث

اقرأ أيضاً

The bispectrum is a 3-point statistic with the potential to provide additional information beyond power spectra analyses of survey datasets. Radio telescopes which broadly survey the 21cm emission from neutral hydrogen (HI) are a promising way to pro be LSS and in this work we present an investigation into the HI intensity mapping (IM) bispectrum using simulations. We present a model of the redshift space HI IM bispectrum including observational effects from the radio telescope beam and 21cm foreground contamination. We validate our modelling prescriptions with measurements from robust IM simulations, inclusive of these observational effects. Our foreground simulations include polarisation leakage, on which we use a Principal Component Analysis cleaning method. We also investigate the effects from a non-Gaussian beam including side-lobes. For a MeerKAT-like single-dish IM survey at $z=0.39$, we find that foreground removal causes a 8% reduction in the equilateral bispectrums signal-to-noise ratio $S/N$, whereas the beam reduces it by 62%. We find our models perform well, generally providing $chi^2_text{dof}sim 1$, indicating a good fit to the data. Whilst our focus is on post-reionisation, single-dish IM, our modelling of observational effects, especially foreground removal, can also be relevant to interferometers and reionisation studies.
Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysi cal or cosmological quantities derived from measurements. We consider a theoretical treatment of the effect of line broadening on both the clustering and shot-noise components of the power spectrum of a generic line-intensity power spectrum using a halo model. We then consider possible simplifications to allow easier application in analysis, particularly in the context of inferences that require numerous, repeated, fast computations of model line-intensity signals across a large parameter space. For the CO Mapping Array Project (COMAP) and the CO(1-0) line-intensity field at $zsim3$ serving as our primary case study, we expect a $sim10%$ attenuation of the spherically averaged power spectrum on average at relevant scales of $kapprox0.2$-$0.3$ Mpc$^{-1}$, compared to $sim25%$ for the interferometric Millimetre-wave Intensity Mapping Experiment (mmIME) targeting shot noise from CO lines at $zsim1$-$5$ at scales of $kgtrsim1$ Mpc$^{-1}$. We also consider the nature and amplitude of errors introduced by simplified treatments of line broadening, and find that while an approximation using a single effective velocity scale is sufficient for spherically-averaged power spectra, a more careful treatment is necessary when considering other statistics such as higher multipoles of the anisotropic power spectrum or the voxel intensity distribution.
We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L -band receivers ($1.05$--$1.45$ GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters ($w_{0},w_{a}$) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is $6000,{rm deg}^2$. However, observing with larger frequency coverage at higher redshift ($0.95$--$1.35$ GHz) improves the projected errorbars on the HI power spectrum by more than $2~sigma$ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.
Intensity mapping (IM) with neutral hydrogen is a promising avenue to probe the large scale structure of the Universe. In this paper, we demonstrate that using the 64-dish MeerKAT radio telescope as a connected interferometer, it is possible to make a statistical detection of HI in the post-reionization Universe. With the MIGHTEE (MeerKAT International GHz Tiered Extragalactic Exploration) survey project observing in the L-band ($856 < u < 1712$ MHz, $z < 0.66$), we can achieve the required sensitivity to measure the HI IM power spectrum on quasi-linear scales, which will provide an important complementarity to the single-dish IM MeerKAT observations. We present a purpose-built simulation pipeline that emulates the MIGHTEE observations and forecast the constraints that can be achieved on the HI power spectrum at $z = 0.27$ for $k > 0.3$ $rm{Mpc}^{-1}$ using the foreground avoidance method. We present the power spectrum estimates with the current simulation on the COSMOS field that includes contributions from HI, noise and point source models constructed from the observed MIGHTEE data. The results from our textit{visibility} based pipeline are in qualitative agreement to the already available MIGHTEE data. This paper demonstrates that MeerKAT can achieve very high sensitivity to detect HI with the full MIGHTEE survey on quasi-linear scales (signal-to-noise ratio $> 7$ at $k=0.49$ $rm{Mpc}^{-1}$) which are instrumental in probing cosmological quantities such as the spectral index of fluctuation, constraints on warm dark matter, the quasi-linear redshift space distortions and the measurement of the HI content of the Universe up to $zsim 0.5$.
HI intensity mapping is a new observational technique to survey the large-scale structure of matter using the 21 cm emission line of atomic hydrogen (HI). In this work, we simulate BINGO (BAO from Integrated Neutral Gas Observations) and SKA (Square Kilometre Array) phase-1 dish array operating in auto-correlation mode. For the optimal case of BINGO with no foregrounds, the combination of the HI angular power spectra with Planck results allows $w$ to be measured with a precision of $4%$, while the combination of the BAO acoustic scale with Planck gives a precision of $7%$. We consider a number of potentially complicating effects, including foregrounds and redshift dependent bias, which increase the uncertainty on $w$ but not dramatically; in all cases the final uncertainty is found to be $Delta w < 8%$ for BINGO. For the combination of SKA-MID in auto-correlation mode with Planck, we find that, in ideal conditions, $w$ can be measured with a precision of $4%$ for the redshift range $0.35 < z < 3$ (i.e., for the bandwidth of $Delta u = [350, 1050]$ MHz) and $2%$ for $0 < z < 0.49$ (i.e., $Delta u = [950, 1421]$ MHz). Extending the model to include the sum of neutrino masses yields a $95%$ upper limit of $sum m_ u < 0.24$ eV for BINGO and $sum m_ u < 0.08$ eV for SKA phase 1, competitive with the current best constraints in the case of BINGO and significantly better than them in the case of SKA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا