ﻻ يوجد ملخص باللغة العربية
HI Intensity Mapping (IM) will be used to do precision cosmology using many existing and upcoming radio observatories. The signal will be contaminated due to absorption, the largest component of which will be the flux absorbed by the HI emitting sources themselves from the flux incident on them from background radio continuum sources. We, for the first time, provide a quantitative estimate of the magnitude of the absorbed flux compared to the emitted HI flux for various voxels placed at redshifts between 0.1 and 2.5. We use a cosmological sky simulation of the atomic HI emission line, and sum over the emitted and absorbed fluxes for all sources within voxels at different redshifts. For estimating the absorbed flux we use various relations based on existing observations as well as simulations. We find that for the same co-moving volume of sky, the HI emission falls off quickly with increasing redshift, while the absorption varies much less with redshift and follows the redshift distribution of faint sources that dominate the number counts of radio continuum sources. This results in the fraction of absorption compared to emission to be negligible in the nearby Universe (up to a redshift of ~0.5), increases to about 10% at a redshift of 1, and continues to increase to about 30% up to a redshift of 2.5. These numbers can vary significantly due to the uncertainties on the exact forms of the various relations used, the largest variation being driven by the uncertainty on the number counts of radio continuum sources at sub-mJy flux densities. Absorption of flux incident from background radio continuum sources might become an important contaminant to HI IM signals beyond redshifts of 0.5, and needs to be quantified more accurately using inputs from upcoming deep high resolution surveys of radio continuum sources, HI absorption, and HI emission with the SKA and its precursors.
The bispectrum is a 3-point statistic with the potential to provide additional information beyond power spectra analyses of survey datasets. Radio telescopes which broadly survey the 21cm emission from neutral hydrogen (HI) are a promising way to pro
Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysi
We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L
Intensity mapping (IM) with neutral hydrogen is a promising avenue to probe the large scale structure of the Universe. In this paper, we demonstrate that using the 64-dish MeerKAT radio telescope as a connected interferometer, it is possible to make
HI intensity mapping is a new observational technique to survey the large-scale structure of matter using the 21 cm emission line of atomic hydrogen (HI). In this work, we simulate BINGO (BAO from Integrated Neutral Gas Observations) and SKA (Square