ﻻ يوجد ملخص باللغة العربية
A subposet $Q$ of a poset $Q$ is a textit{copy of a poset} $P$ if there is a bijection $f$ between elements of $P$ and $Q$ such that $x le y$ in $P$ iff $f(x) le f(y)$ in $Q$. For posets $P, P$, let the textit{poset Ramsey number} $R(P,P)$ be the smallest $N$ such that no matter how the elements of the Boolean lattice $Q_N$ are colored red and blue, there is a copy of $P$ with all red elements or a copy of $P$ with all blue elements. Axenovich and Walzer introduced this concept in textit{Order} (2017), where they proved $R(Q_2, Q_n) le 2n + 2$ and $R(Q_n, Q_m) le mn + n + m$, where $Q_n$ is the Boolean lattice of dimension $n$. They later proved $2n le R(Q_n, Q_n) le n^2 + 2n$. Walzer later proved $R(Q_n, Q_n) le n^2 + 1$. We provide some improved bounds for $R(Q_n, Q_m)$ for various $n,m in mathbb{N}$. In particular, we prove that $R(Q_n, Q_n) le n^2 - n + 2$, $R(Q_2, Q_n) le frac{5}{3}n + 2$, and $R(Q_3, Q_n) le frac{37}{16}n + frac{39}{16}$. We also prove that $R(Q_2,Q_3) = 5$, and $R(Q_m, Q_n) le (m - 2 + frac{9m - 9}{(2m - 3)(m + 1)})n + m + 3$ for all $n ge m ge 4$.
Given posets $mathbf{P}_1,mathbf{P}_2,ldots,mathbf{P}_k$, let the {em Boolean Ramsey number} $R(mathbf{P}_1,mathbf{P}_2,ldots,mathbf{P}_k)$ be the minimum number $n$ such that no matter how we color the elements in the Boolean lattice $mathbf{B}_n$ w
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,
Given graphs $G$ and $H$ and a positive integer $k$, the emph{Gallai-Ramsey number}, denoted by $gr_{k}(G : H)$ is defined to be the minimum integer $n$ such that every coloring of $K_{n}$ using at most $k$ colors will contain either a rainbow copy o
Given graphs $H_1, dots, H_t$, a graph $G$ is $(H_1, dots, H_t)$-Ramsey-minimal if every $t$-coloring of the edges of $G$ contains a monochromatic $H_i$ in color $i$ for some $iin{1, dots, t}$, but any proper subgraph of $G $ does not possess this pr
Let $B_n$ be the poset generated by the subsets of $[n]$ with the inclusion as relation and let $P$ be a finite poset. We want to embed $P$ into $B_n$ as many times as possible such that the subsets in different copies are incomparable. The maximum n