ﻻ يوجد ملخص باللغة العربية
In this paper, an efficient high-order gas-kinetic scheme (EHGKS) is proposed to solve the Euler equations for compressible flows. We re-investigate the underlying mechanism of the high-order gas-kinetic scheme (HGKS) and find a new strategy to improve its efficiency. The main idea of the new scheme contains two parts. Firstly, inspired by the state-of-art simplifications on the third-order HGKS, we extend the HGKS to the case of arbitrary high-order accuracy and eliminate its unnecessary high-order dissipation terms. Secondly, instead of computing the derivatives of particle distribution function and their complex moments, we introduce a Lax-Wendroff procedure to compute the high-order derivatives of macroscopic quantities directly. The new scheme takes advantage of both HGKS and the Lax-Wendroff procedure, so that it can be easily extended to the case of arbitrary high-order accuracy with practical significance. Typical numerical tests are carried out by EHGKS, with the third, fifth and seventh-order accuracy. The presence of good resolution on the discontinuities and flow details, together with the optimal CFL numbers, validates the high accuracy and strong robustness of EHGKS. To compare the efficiency, we present the results computed by the EHGKS, the original HGKS and Runge-Kutta-WENO-GKS. This further demonstrates the advantages of EHGKS.
This paper presents a Graphics Processing Units (GPUs) acceleration method of an iterative scheme for gas-kinetic model equations. Unlike the previous GPU parallelization of explicit kinetic schemes, this work features a fast converging iterative sch
This paper extends the gas-kinetic scheme for one-dimensional inviscid shallow water equations (J. Comput. Phys. 178 (2002), pp. 533-562) to multidimensional gas dynamic equations under gravitational fields. Four important issues in the construction
The discrete unified gas kinetic scheme (DUGKS) is a new finite volume (FV) scheme for continuum and rarefied flows which combines the benefits of both Lattice Boltzmann Method (LBM) and unified gas kinetic scheme (UGKS). By reconstruction of gas dis
The general synthetic iteration scheme (GSIS) is extended to find the steady-state solution of nonlinear gas kinetic equation, removing the long-standing problems of slow convergence and requirement of ultra-fine grids in near-continuum flows. The ke
With a noticeable increase in research centered on modeling micro fluid interfaces in the framework of mesoscopic methods, we conduct an exhaustive study of discrete unified gas-kinetics scheme (DUGKS) in handling complicated interface deformations.