ترغب بنشر مسار تعليمي؟ اضغط هنا

Where to find Electromagnetic Wave Counterparts of stellar-mass binary black hole mergers?

107   0   0.0 ( 0 )
 نشر من قبل Shu-Xu Yi Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-messenger astronomy combining Gravitational Wave (GW) and Electromagnetic Wave (EM) observation brings huge impact on physics, astrophysics and cosmology. However, the majority of sources to be detected with currently running ground-based GW observatories are binary black hole (BBH) mergers, which are expected disappointedly to have no EM counterparts. In this letter, we propose that if the BBH merger happens in a gaseous disk around a supermassive black hole, the merger can be accompanied by a transient radio flare alike a fast radio burst (FRB). We argue that the total mass and the effective spin derived from GW detection can be used to distinguish such a source from other channels of BBH mergers. If the prediction is confirmed with future observation, multi-messenger astronomy can be brought to a distance which is one order of magnitude farther than present. The mystery of the origin of FRBs can also be revealed partially.



قيم البحث

اقرأ أيضاً

The next two decades are expected to open the door to the first coincident detections of electromagnetic (EM) and gravitational wave (GW) signatures associated with massive black hole (MBH) binaries heading for coalescence. These detections will laun ch a new era of multimessenger astrophysics by expanding this growing field to the low-frequency GW regime and will provide unprecedented understanding of the evolution of MBHs and galaxies. They will also constitute fundamentally new probes of cosmology and would enable unique tests of gravity. The aim of this Living Review is to provide an introduction to this research topic by presenting a summary of key findings, physical processes and ideas pertaining to EM counterparts to MBH mergers as they are known at the time of this writing. We review current observational evidence for close MBH binaries, discuss relevant physical processes and timescales, and summarize the possible EM counterparts to GWs in the precursor, coalescence, and afterglow stages of a MBH merger. We also describe open questions and discuss future prospects in this dynamic and quick paced research area.
The first detection of a binary neutron star merger through gravitational waves and photons marked the dawn of multi-messenger astronomy with gravitational waves, and it greatly increased our insight in different fields of astrophysics and fundamenta l physics. However, many open questions on the physical process involved in a compact binary merger still remain and many of these processes concern plasma physics. With the second generation of gravitational wave interferometers approaching their design sensitivity, the new generation under design study, and new X-ray detectors under development, the high energy Universe will become more and more a unique laboratory for our understanding of plasma in extreme conditions. In this review, we discuss the main electromagnetic signals expected to follow the merger of two compact objects highlighting the main physical processes involved and some of the most important open problems in the field.
The Advanced LIGO and Advanced Virgo gravitational wave detectors have detected a population of binary black hole mergers in their first two observing runs. For each of these events we have been able to associate a potential sky location region repre sented as a probability distribution on the sky. Thus, at this point we may begin to ask the question of whether this distribution agrees with the isotropic model of the Universe, or if there is any evidence of anisotropy. We perform Bayesian model selection between an isotropic and a simple anisotropic model, taking into account the anisotropic selection function caused by the underlying antenna patterns and sensitivity of the interferometers over the sidereal day. We find an inconclusive Bayes factor of $1.3:1$, suggesting that the data from the first two observing runs is insufficient to pick a preferred model. However, the first detections were mostly poorly localised in the sky (before the Advanced Virgo joined the network), spanning large portions of the sky and hampering detection of potential anisotropy. It will be appropriate to repeat this analysis with events from the recent third LIGO observational run and a more sophisticated cosmological model.
Black hole-neutron star (BHNS) binaries are amongst promising candidates for the joint detection of electromagnetic (EM) signals with gravitational waves (GWs) and are expected to be detected in the near future. Here we study the effect of the BHNS b inary parameters on the merger ejecta properties and associated EM signals. We estimate the remnant disk and unbound ejecta masses for BH mass and spin distributions motivated from the observations of transient low-mass X-ray binaries (LMXBs) and specific NS equation of state (EoS). The amount of r-process elements synthesised in BHNS mergers is estimated to be a factor of $sim 10^{2}-10^{4}$ smaller than BNS mergers, due to the smaller dynamical ejecta and merger rates for the former. We compute the EM luminosities and light curves for the early- and late-time emissions from the ultra-relativistic jet, sub-relativistic dynamical ejecta and wind, and the mildly-relativistic cocoon for typical ejecta parameters. We then evaluate the low-latency EM follow-up rates of the GW triggers in terms of the GW detection rate $dot{N}_{GW}$ for current telescope sensitivities and typical BHNS binary parameters to find that most of the EM counterparts are detectable for high BH spin, small BH mass and stiffer NS EoS when NS disruption is significant. Based on the relative detection rates for given binary parameters, we find the ease of EM follow-up to be: ejecta afterglow $>$ cocoon afterglow $gtrsim$ jet prompt $>$ ejecta macronova $>$ cocoon prompt $>$ jet afterglow $>>$ wind macronova $>>$ wind afterglow.
Detections of gravitational waves (GWs) may soon uncover the signal from the coalescence of a black hole - neutron star (BHNS) binary, that is expected to be accompanied by an electromagnetic (EM) signal. In this paper, we present a composite semi-an alytical model to predict the properties of the expected EM counterpart from BHNS mergers, focusing on the kilonova emission and on the gamma-ray burst afterglow. Four main parameters rule the properties of the EM emission: the NS mass $M_mathrm{NS}$, its tidal deformability $Lambda_mathrm{NS}$, the BH mass and spin. Only for certain combinations of these parameters an EM counterpart is produced. Here we explore the parameter space, and construct light curves, analysing the dependence of the EM emission on the NS mass and tidal deformability. Exploring the NS parameter space limiting to $M_mathrm{NS}-Lambda_mathrm{NS}$ pairs described by a physically motivated equations of state (EoS), we find that the brightest EM counterparts are produced in binaries with low mass NSs (fixing the BH properties and the EoS). Using constraints on the NS EoS from GW170817, our modeling shows that the emission falls in a narrow range of absolute magnitudes. Within the range of explored parameters, light curves and peak times are not dissimilar to those from NSNS mergers, except in the B band. The lack of an hyper/supra-massive NS in BHNS coalescences causes a dimming of the blue kilonova emission in absence of the neutrino interaction with the ejecta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا