ﻻ يوجد ملخص باللغة العربية
In this article we show that the vector-Apodizing Phase Plate (vAPP) coronagraph can be designed such that the coronagraphic point spread functions (PSFs) can act as a wavefront sensor to measure and correct the (quasi-)static aberrations, without dedicated wavefront sensing holograms nor modulation by the deformable mirror. The absolute wavefront retrieval is performed with a non-linear algorithm. The focal-plane wavefront sensing (FPWFS) performance of the vAPP and the algorithm are evaluated with numerical simulations, to test various photon and read noise levels, the sensitivity to the 100 lowest Zernike modes and the maximum wavefront error (WFE) that can be accurately estimated in one iteration. We apply these methods to the vAPP within SCExAO, first with the internal source and subsequently on-sky. In idealised simulations we show that for $10^7$ photons the root-mean-square (RMS) WFE can be reduced to $simlambda/1000$, which is 1 nm RMS in the context of the SCExAO system. We find that the maximum WFE that can be corrected in one iteration is $simlambda/8$ RMS or $sim$200 nm RMS (SCExAO). Furthermore, we demonstrate the SCExAO vAPP capabilities by measuring and controlling the lowest 30 Zernike modes with the internal source and on-sky. On-sky, we report a raw contrast improvement of a factor $sim$2 between 2 and 4 $lambda/D$ after 5 iterations of closed-loop correction. When artificially introducing 150 nm RMS WFE, the algorithm corrects it within 5 iterations of closed-loop operation. FPWFS with the vAPPs coronagraphic PSFs is a powerful technique since it integrates coronagraphy and wavefront sensing, eliminating the need for additional probes and thus resulting in a $100%$ science duty cycle and maximum throughput for the target.
Focal plane wavefront sensing is an elegant solution for wavefront sensing since near-focal images of any source taken by a detector show distortions in the presence of aberrations. Non-Common Path Aberrations and the Low Wind Effect both have the ab
The vector-Apodizing Phase Plate (vAPP) is a pupil-plane coronagraph that manipulates phase to create dark holes in the stellar PSF. The phase is induced on the circular polarization states through the inherently achromatic geometric phase by spatial
The apodizing phase plate (APP) is a solid-state pupil optic that clears out a D-shaped area next to the core of the ensuing PSF. To make the APP more efficient for high-contrast imaging, its bandwidth should be as large as possible, and the location
Over the last decade, the vector-apodizing phase plate (vAPP) coronagraph has been developed from concept to on-sky application in many high-contrast imaging systems on 8-m class telescopes. The vAPP is an geometric-phase patterned coronagraph that i
High quality, repeatable point-spread functions are important for science cases like direct exoplanet imaging, high-precision astrometry, and high-resolution spectroscopy of exoplanets. For such demanding applications, the initial on-sky point-spread