ترغب بنشر مسار تعليمي؟ اضغط هنا

The DireXeno Experiment -- Measuring Correlated Scintillation Signatures in Liquid Xenon

113   0   0.0 ( 0 )
 نشر من قبل Ran Itay
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detector apparatus, DireXeno (DIRectinal Xenon), designed to measure the spatial and temporal properties of scintillation in liquid xenon to very high accuracy. The properties of scintillation are of primary importance for dark matter and neutrinoless double beta decay experiments, however the complicated microphysics involved limits theoretical predictions. We will explore the possibility that scintillation emission exhibits correlation in light emission such as super-radiance, which depends on the type of interaction. Such properties of scintillation light may open a new window for background rejection as well as directionality measurements. We present the technical design and the concepts driving it, and demonstrate that statistical treatment will enable detecting anisotropy of as little as 10% of the photons. We show results from commissioning runs in which the detector operated for over 44 days in stable conditions. The time resolution for individual photons in different PMTs was measured to be $lesssim1.3$ ns FWHM, corresponding to $lesssim0.55$ ns (1 $sigma$).



قيم البحث

اقرأ أيضاً

Liquid xenon (LXe) is employed in a number of current and future detectors for rare event searches. We use the EXO-200 experimental data to measure the absolute scintillation and ionization yields generated by $gamma$ interactions from $^{228}$Th (26 15~keV), $^{226}$Ra (1764~keV) and $^{60}$Co (1332~keV and 1173~keV) calibration sources, over a range of electric fields. The $W$-value that defines the recombination-independent energy scale is measured to be $11.5~pm~0.5$~(syst.)~$pm~0.1$~(stat.) eV. These data are also used to measure the recombination fluctuations in the number of electrons and photons produced by the calibration sources at the MeV-scale, which deviate from extrapolations of lower-energy data. Additionally, a semi-empirical model for the energy resolution of the detector is developed, which is used to constrain the recombination efficiency, i.e., the fraction of recombined electrons that result in the emission of a detectable photon. Detailed measurements of the absolute charge and light yields for MeV-scale electron recoils are important for predicting the performance of future neutrinoless double beta decay detectors.
359 - D.E. Fields , R. Gibbons , M. Gold 2020
Scintillation from noble gases is an important technique in particle physics including neutrino beam experiments, neutrino-less double beta-decay and dark matter searches. In liquid argon, the possibility of enhancing the light yield by the addition of a small quantity of xenon (doping at 10-1000 ppm) has been of particular interest. While the pathway for energy transfer between argon and xenon excimers is well known, the time-dependence of the process has not been fully studied in the context of a physics-based model. In this paper we present a model of the energy transfer process together with a fit to xenon-doped argon data. We have measured the diffusion limited rate constant as a function of xenon dopant. We find that the time dependence of the energy transfer is consistent with diffusion-limited reactions. Additionally, we find that commercially obtained argon can have a small xenon component (4 ppm). Our result will facilitate the use of xenon-doped liquid argon in future experiments.
The use of xenon-doped liquid argon is a promising alternative for large pure liquid-argon TPCs. Not only xenon-doped liquid argon enhances the light production, mitigating the possible suppression due to impurities, but also it increases the wavelen gth of the scintillation light, enlarging the effective Rayleigh scattering length and improving the detection uniformity. ProtoDUNE Dual-Phase is a 300-ton active volume LAr TPC, a prototype for the Deep Underground Neutrino Experiment (DUNE), a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual-Phase took cosmic muon data at CERN with pure liquid argon and with xenon-doped liquid argon for over a year. The impact of the presence of xenon in the scintillation light and its comparison with the pure liquid argon data will be presented. These results are of interest to any future large LAr TPCs.
110 - K. Ni , E. Aprile , K.L. Giboni 2006
Scintillation light from gamma ray irradiation in liquid xenon is detected by two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV light reflector material, PTFE, is used to optimize the light collection efficiency. The detecto r gives a high light yield of 6 photoelectron per keV (pe/keV), which allows efficient detection of the 122 keV gamma-ray line from Co-57, with a measured energy resolution of (8.8+/-0.6)% (sigma). The best achievable energy resolution, by removing the instrumental fluctuations, from liquid xenon scintillation light is estimated to be around 6-8% (sigma) for gamma-ray with energy between 662 keV and 122 keV.
146 - K. Ueshima , K. Abe , T. Iida 2008
The intensity of scintillation light emission from liquid xenon at room temperature was measured. The scintillation light yield at 1 deg. was measured to be 0.64 +/- 0.02 (stat.) +/- 0.06 (sys.) of that at -100 deg. Using the reported light yield at -100 deg. (46 photons/keV), the measured light yield at 1 deg. corresponds to 29 photons/keV. This result shows that liquid xenon scintillator gives high light yield even at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا