ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-Efficient Classification of Birdcall Through Convolutional Neural Networks Transfer Learning

128   0   0.0 ( 0 )
 نشر من قبل Dmitry Konovalov
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning Convolutional Neural Network (CNN) models are powerful classification models but require a large amount of training data. In niche domains such as bird acoustics, it is expensive and difficult to obtain a large number of training samples. One method of classifying data with a limited number of training samples is to employ transfer learning. In this research, we evaluated the effectiveness of birdcall classification using transfer learning from a larger base dataset (2814 samples in 46 classes) to a smaller target dataset (351 samples in 10 classes) using the ResNet-50 CNN. We obtained 79% average validation accuracy on the target dataset in 5-fold cross-validation. The methodology of transfer learning from an ImageNet-trained CNN to a project-specific and a much smaller set of classes and images was extended to the domain of spectrogram images, where the base dataset effectively played the role of the ImageNet.



قيم البحث

اقرأ أيضاً

547 - Weiyu Guo , Jiabin Ma , Liang Wang 2019
As deep neural networks are increasingly used in applications suited for low-power devices, a fundamental dilemma becomes apparent: the trend is to grow models to absorb increasing data that gives rise to memory intensive; however low-power devices a re designed with very limited memory that can not store large models. Parameters pruning is critical for deep model deployment on low-power devices. Existing efforts mainly focus on designing highly efficient structures or pruning redundant connections for networks. They are usually sensitive to the tasks or relay on dedicated and expensive hashing storage strategies. In this work, we introduce a novel approach for achieving a lightweight model from the views of reconstructing the structure of convolutional kernels and efficient storage. Our approach transforms a traditional square convolution kernel to line segments, and automatically learn a proper strategy for equipping these line segments to model diverse features. The experimental results indicate that our approach can massively reduce the number of parameters (pruned 69% on DenseNet-40) and calculations (pruned 59% on DenseNet-40) while maintaining acceptable performance (only lose less than 2% accuracy).
Deep convolutional neural networks have achieved remarkable success in computer vision. However, deep neural networks require large computing resources to achieve high performance. Although depthwise separable convolution can be an efficient module t o approximate a standard convolution, it often leads to reduced representational power of networks. In this paper, under budget constraints such as computational cost (MAdds) and the parameter count, we propose a novel basic architectural block, ANTBlock. It boosts the representational power by modeling, in a high dimensional space, interdependency of channels between a depthwise convolution layer and a projection layer in the ANTBlocks. Our experiments show that ANTNet built by a sequence of ANTBlocks, consistently outperforms state-of-the-art low-cost mobile convolutional neural networks across multiple datasets. On CIFAR100, our model achieves 75.7% top-1 accuracy, which is 1.5% higher than MobileNetV2 with 8.3% fewer parameters and 19.6% less computational cost. On ImageNet, our model achieves 72.8% top-1 accuracy, which is 0.8% improvement, with 157.7ms (20% faster) on iPhone 5s over MobileNetV2.
In this paper, we propose to utilize Convolutional Neural Networks (CNNs) and the segmentation-based multi-scale analysis to locate tampered areas in digital images. First, to deal with color input sliding windows of different scales, a unified CNN a rchitecture is designed. Then, we elaborately design the training procedures of CNNs on sampled training patches. With a set of robust multi-scale tampering detectors based on CNNs, complementary tampering possibility maps can be generated. Last but not least, a segmentation-based method is proposed to fuse the maps and generate the final decision map. By exploiting the benefits of both the small-scale and large-scale analyses, the segmentation-based multi-scale analysis can lead to a performance leap in forgery localization of CNNs. Numerous experiments are conducted to demonstrate the effectiveness and efficiency of our method.
Roof falls due to geological conditions are major safety hazards in mining and tunneling industries, causing lost work times, injuries, and fatalities. Several large-opening limestone mines in the Eastern and Midwestern United States have roof fall p roblems caused by high horizontal stresses. The typical hazard management approach for this type of roof fall hazard relies heavily on visual inspections and expert knowledge. In this study, we propose an artificial intelligence (AI) based system for the detection roof fall hazards caused by high horizontal stresses. We use images depicting hazardous and non-hazardous roof conditions to develop a convolutional neural network for autonomous detection of hazardous roof conditions. To compensate for limited input data, we utilize a transfer learning approach. In transfer learning, an already-trained network is used as a starting point for classification in a similar domain. Results confirm that this approach works well for classifying roof conditions as hazardous or safe, achieving a statistical accuracy of 86%. However, accuracy alone is not enough to ensure a reliable hazard management system. System constraints and reliability are improved when the features being used by the network are understood. Therefore, we used a deep learning interpretation technique called integrated gradients to identify the important geologic features in each image for prediction. The analysis of integrated gradients shows that the system mimics expert judgment on roof fall hazard detection. The system developed in this paper demonstrates the potential of deep learning in geological hazard management to complement human experts, and likely to become an essential part of autonomous tunneling operations in those cases where hazard identification heavily depends on expert knowledge.
In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses a residual learning strategy, hence it does not recover the filtered image, but the speckle component, which is then subtracted from the noisy one. Training is carried out by considering a large multitemporal SAR image and its multilook version, in order to approximate a clean image. Experimental results, both on synthetic and real SAR data, show the method to achieve better performance with respect to state-of-the-art techniques.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا