ﻻ يوجد ملخص باللغة العربية
Deep metric learning is often used to learn an embedding function that captures the semantic differences within a dataset. A key factor in many problem domains is how this embedding generalizes to new classes of data. In observing many triplet selection strategies for Metric Learning, we find that the best performance consistently arises from approaches that focus on a few, well selected triplets.We introduce visualization tools to illustrate how an embedding generalizes beyond measuring accuracy on validation data, and we illustrate the behavior of a range of triplet selection strategies.
We demonstrate an equivalence between reproducing kernel Hilbert space (RKHS) embeddings of conditional distributions and vector-valued regressors. This connection introduces a natural regularized loss function which the RKHS embeddings minimise, pro
As machine learning algorithms are increasingly deployed for high-impact automated decision making, ethical and increasingly also legal standards demand that they treat all individuals fairly, without discrimination based on their age, gender, race o
In deep neural nets, lower level embedding layers account for a large portion of the total number of parameters. Tikhonov regularization, graph-based regularization, and hard parameter sharing are approaches that introduce explicit biases into traini
Kernel mean embeddings are a popular tool that consists in representing probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space. When the kernel is characteristic, mean embeddings can be used to define
We study the robustness of image classifiers to temporal perturbations derived from videos. As part of this study, we construct two datasets, ImageNet-Vid-Robust and YTBB-Robust , containing a total 57,897 images grouped into 3,139 sets of perceptual