ﻻ يوجد ملخص باللغة العربية
We explore the production and escape of ionizing photons in young galaxies by investigating the ultraviolet and optical emission-line properties of models of ionization-bounded and density-bounded HII regions, active-galactic-nucleus (AGN) narrow-line regions and radiative shocks computed all using the same physically-consistent description of element abundances and depletion on to dust grains down to very low metallicities. We compare these models with a reference sample of metal-poor star-forming galaxies and Lyman-continuum (LyC) leakers at various redshifts, which allows the simultaneous exploration of more spectral diagnostics than typically available at once for individual subsamples. We confirm that current single- and binary-star population synthesis models do not produce hard-enough radiation to account for the high-ionization emission of the most metal-poor galaxies. Introducing either an AGN or radiative-shock component brings models into agreement with observations. A published model including X-ray binaries is an attractive alternative to reproduce the observed rise in HeII4686/Hbeta ratio with decreasing oxygen abundance in metal-poor star-forming galaxies, but not the high observed HeII4686/Hbeta ratios of galaxies with large EW(Hbeta). A source of harder ionizing radiation appears to be required in these extreme objects, such as an AGN or radiative-shock component, perhaps linked to an initial-mass-function bias toward massive stars at low metallicity. This would also account for the surprisingly high [OI]/[OIII] ratios of confirmed LyC leakers relative to ionization-bounded models. We find no simple by-eye diagnostic of the nature of ionizing sources and the escape of LyC photon, which require proper simultaneous fits of several lines to be discriminated against.
Using results from high-resolution galaxy formation simulations in a standard Lambda-CDM cosmology and a fully conservative multi-resolution radiative transfer code around point sources, we compute the energy-dependent escape fraction of ionizing pho
We describe a new method for simulating ionizing radiation and supernova feedback in the analogues of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve th
We investigate radiation hardness within a representative sample of 67 nearby (0.02 $lesssim $z$ lesssim$0.06) star-forming (SF) galaxies using the integral field spectroscopic data from the MaNGA survey. The softness parameter $eta$ = $frac{O^{+}/O^
In this paper we calculate the escape fraction ($f_{rm esc}$) of ionizing photons from starburst galaxies. Using 2-D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the e
We report on the HST detection of the Lyman-continuum (LyC) radiation emitted by a galaxy at redshift z=3.794, dubbed Ion1 (Vanzella et al. 2012). The LyC from Ion1 is detected at rest-frame wavelength 820$sim$890 AA with HST WFC3/UVIS in the F410M b