ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of $P_{mathrm{tot}}$ gates and velocity gates on light-particle momentum correlation in intermediate-energy heavy-ion collisions

101   0   0.0 ( 0 )
 نشر من قبل Yu-Gang Ma
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Momentum correlation functions at small relative momenta are calculated for light particles $left(n, p, d, tright)$ emitted from $^{197}$Au + $^{197}$Au collisions at different impact parameters and beam energies within the framework of the isospin-dependent quantum molecular dynamics model complemented by the $Lednickacute{y}$ and $Lyuboshitz$ analytical method. We first make sure our model is able to reproduce the FOPI data of proton-proton momentum correlation in a wide energy range from 0.4$A$ GeV to 1.5$A$ GeV. Then we explore more physics insights through the emission times and momentum correlations among different light particles. The specific emphasize is the effects of total pair momentum among different light particles, impact parameters and in-medium nucleon-nucleon cross section. Both two-deuteron and two-triton correlation functions are anti-correlation due to the final state interaction, and they are affected by in-medium nucleon-nucleon cross section for the higher total momentum of the particle pairs, but not for the lower ones. In addition, impact parameter and in-medium nucleon-nucleon cross section dependences of the emission source radii are extracted by fitting the momentum correlation functions. The results indicate that momentum correlation functions gating with total pair momentum is stronger for the smaller in-medium nucleon-nucleon cross section factor $left(etaright)$ or impact parameter $left(bright)$. Non-identical particle correlations ($np, pd, pt, $ and $dt$) are also investigated by the velocity-gated correlation functions which can give information of the particles emission sequence, and the result indicates that heavier ones $left(deuteron/tritonright)$ are, one the average, emitted earlier than protons, in the small relative momentum region.



قيم البحث

اقرأ أيضاً

The proton-proton momentum correlation function from different rapidity regions are systematically investigated for the Au + Au collisions at different impact parameters and different energies from 400$A$ MeV to 1500$A$ MeV in the framework of the is ospin-dependent quantum molecular dynamics model complemented by the $Lednickacute{y}$ and $Lyuboshitz$ analytical method. In particular, in-medium nucleon-nucleon cross section dependence of the correlation function is brought into focus, while the impact parameter and energy dependence of the momentum correlation function are also explored. The sizes of the emission source are extracted by fitting the momentum correlation functions using the Gaussian source method. We find that the in-medium nucleon-nucleon cross section obviously influence the proton-proton momentum correlation function which is from the whole rapidity or projectile/target rapidity region at smaller impact parameters, but there is no effect on the mid-rapidity proton-proton momentum correlation function, which indicates that the emission mechanism differs between projectile/target rapidity and mid-rapidity protons.
Three typical algorithms of Pauli blocking in the quantum molecular dynamics type models are investigated in the nuclear matter, the nucleus and the heavy ion collisions. The calculations in nuclear matter show that the blocking ratios obtained with the three algorithms are underestimated 13-25% compared to the analytical values of blocking ratios. For the finite nucleus, the spurious collisions occur around the surface of the nucleus owing to the defects of Pauli blocking algorithms. In the simulations of heavy ion collisions, the uncertainty of stopping power from different Pauli blocking algorithms is less than 5%. Furthermore, the in-medium effects of nucleon-nucleon ($NN$) cross sections on the nuclear stopping power are discussed. Our results show that the transport models calculations with free $NN$ cross sections result in the stopping power decreasing with the beam energy at the beam energy less than 300 MeV/u. To increase or decrease the values of stopping power, an enhanced or suppressed model dependent in-medium $NN$ cross section is required.
400 - S. S. Wang , Y. G. Ma , X. G. Cao 2020
Anisotropic flow can offer significant information of evolution dynamics in heavy-ion collisions. A systematic study of the directed flow $v_1$ and elliptic flow $v_2$ of hard photons and free nucleons is performed for $^{40}$Ca+$^{40}$Ca collisions in a framework of isospin dependent quantum molecular dynamics (IQMD) model. The study firstly reveals that thermal photons emitted in intermediate-energy heavy-ion collisions have the behaviors of directed and elliptic flows. The interesting phenomena of incident energy dependence of $v_1$ and $v_2$ for thermal photons in central collisions also confirmed that it can be regarded as a good probe of evolution dynamics. Moreover, the multiplicities of hard photons and free nucleons and their correlation are also investigated. We find that direct photon emission is positively related to free nucleons emission, however, there exists an anti-correlation for thermal photons with free nucleons.
57 - Jun Song , Feng-lan Shao , 2019
We show that the experimental data of transverse momentum ($p_{T}$) spectra of $Omega$ baryon and $phi$ meson at mid-rapidity in heavy-ion collisions exhibit the constituent quark number scaling in a wide energy range from RHIC to LHC. Such a scaling behavior is a direct consequence of quark combination mechanism via equal velocity combination and provides a very convenient way to extract the $p_{T}$ spectrum of strange quarks at hadronization. We present the results of strange quarks obtained from the available data and study the properties in particular the energy dependence of the averaged transverse momentum $langle p_{T}rangle$ and the transverse radial flow velocity $langlebetarangle$ with a hydrodynamics-motivated blast-wave model.
In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orb it coupling. Recently, the STAR experiment has presented polarization signals for $Lambda$ hyperons and possible spin alignment signals for $phi$ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than $|eta|< sim 1$ will generate a larger value for the extracted $phi$-meson $rho_{00}$ parameter; thus a finite coverage can lead to an artificial deviation of $rho_{00}$ from 1/3. We also show that a finite $eta$ and $p_T$ coverage affect the extracted $p_H$ parameter for $Lambda$ hyperons when the real $p_H$ value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا