ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical Layer Security in UAV Systems: Challenges and Opportunities

124   0   0.0 ( 0 )
 نشر من قبل Xiaofang Sun
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Unmanned aerial vehicle (UAV) wireless communications have experienced an upsurge of interest in both military and civilian applications, due to its high mobility, low cost, on-demand deployment, and inherent line-of-sight (LoS) air-to-ground channels. However, these benefits also make UAV wireless communication systems vulnerable to malicious eavesdropping attacks. In this article, we aim to examine the physical layer security issues in UAV systems. In particular, passive and active eavesdroppings are two primary attacks in UAV systems. We provide an overview on emerging techniques, such as trajectory design, resource allocation, and cooperative UAVs, to fight against both types of eavesdroppings in UAV wireless communication systems. Moreover, the applications of non-orthogonal multiple access, multiple-input and multiple-output, and millimeter wave in UAV systems are also proposed to improve the system spectral efficiency and to guarantee security simultaneously. Finally, we discuss some potential research directions and challenges in terms of physical layer security in UAV systems.



قيم البحث

اقرأ أيضاً

In this paper, we investigate a large intelligent surface-enhanced (LIS-enhanced) system, where a LIS is deployed to assist secure transmission. Our design aims to maximize the achievable secrecy rates in different channel models, i.e., Rician fading and (or) independent and identically distributed Gaussian fading for the legitimate and eavesdropper channels. In addition, we take into consideration an artificial noise-aided transmission structure for further improving system performance. The difficulties of tackling the aforementioned problems are the structure of the expected secrecy rate expressions and the non-convex phase shift constraint. To facilitate the design, we propose two frameworks, namely the sample average approximation based (SAA-based) algorithm and the hybrid stochastic projected gradient-convergent policy (hybrid SPG-CP) algorithm, to calculate the expectation terms in the secrecy rate expressions. Meanwhile, majorization minimization (MM) is adopted to address the non-convexity of the phase shift constraint. In addition, we give some analyses on two special scenarios by making full use of the expectation terms. Simulation results show that the proposed algorithms effectively optimize the secrecy communication rate for the considered setup, and the LIS-enhanced system greatly improves secrecy performance compared to conventional architectures without LIS.
Due to its high mobility and flexible deployment, unmanned aerial vehicle (UAV) is drawing unprecedented interest in both military and civil applications to enable agile wireless communications and provide ubiquitous connectivity. Mainly operating in an open environment, UAV communications can benefit from dominant line-of-sight links; however, it on the other hand renders the UAVs more vulnerable to malicious eavesdropping or jamming attacks. Recently, physical layer security (PLS), which exploits the inherent randomness of the wireless channels for secure communications, has been introduced to UAV systems as an important complement to the conventional cryptography-based approaches. In this paper, a comprehensive survey on the current achievements of the UAV-aided wireless communications is conducted from the PLS perspective. We first introduce the basic concepts of UAV communications including the typical static/mobile deployment scenarios, the unique characteristics of air-to-ground channels, as well as various roles that a UAV may act when PLS is concerned. Then, we introduce the widely used secrecy performance metrics and start by reviewing the secrecy performance analysis and enhancing techniques for statically deployed UAV systems, and extend the discussion to a more general scenario where the UAVs mobility is further exploited. For both cases, respectively, we summarize the commonly adopted methodologies in the corresponding analysis and design, then describe important works in the literature in detail. Finally, potential research directions and challenges are discussed to provide an outlook for future works in the area of UAV-PLS in 5G and beyond networks.
The intrinsic integration of the nonorthogonal multiple access (NOMA) and reconfigurable intelligent surface (RIS) techniques is envisioned to be a promising approach to significantly improve both the spectrum efficiency and energy efficiency for fut ure wireless communication networks. In this paper, the physical layer security (PLS) for a RIS-aided NOMA 6G networks is investigated, in which a RIS is deployed to assist the two dead zone NOMA users and both internal and external eavesdropping are considered. For the scenario with only internal eavesdropping, we consider the worst case that the near-end user is untrusted and may try to intercept the information of far-end user. A joint beamforming and power allocation sub-optimal scheme is proposed to improve the system PLS. Then we extend our work to a scenario with both internal and external eavesdropping. Two sub-scenarios are considered in this scenario: one is the sub-scenario without channel state information (CSI) of eavesdroppers, and another is the sub-scenario where the eavesdroppers CSI are available. For the both sub-scenarios, a noise beamforming scheme is introduced to be against the external eavesdroppers. An optimal power allocation scheme is proposed to further improve the system physical security for the second sub-scenario. Simulation results show the superior performance of the proposed schemes. Moreover, it has also been shown that increasing the number of reflecting elements can bring more gain in secrecy performance than that of the transmit antennas.
With the depletion of spectrum, wireless communication systems turn to exploit large antenna arrays to achieve the degree of freedom in space domain, such as millimeter wave massive multi-input multioutput (MIMO), reconfigurable intelligent surface a ssisted communications and cell-free massive MIMO. In these systems, how to acquire accurate channel state information (CSI) is difficult and becomes a bottleneck of the communication links. In this article, we introduce the concept of channel extrapolation that relies on a small portion of channel parameters to infer the remaining channel parameters. Since the substance of channel extrapolation is a mapping from one parameter subspace to another, we can resort to deep learning (DL), a powerful learning architecture, to approximate such mapping function. Specifically, we first analyze the requirements, conditions and challenges for channel extrapolation. Then, we present three typical extrapolations over the antenna dimension, the frequency dimension, and the physical terminal, respectively. We also illustrate their respective principles, design challenges and DL strategies. It will be seen that channel extrapolation could greatly reduce the transmission overhead and subsequently enhance the performance gains compared with the traditional strategies. In the end, we provide several potential research directions on channel extrapolation for future intelligent communications systems.
The integration of unmanned aerial vehicles (UAVs) into the terrestrial cellular networks is envisioned as one key technology for next-generation wireless communications. In this work, we consider the physical layer security of the communications lin ks in the millimeter-wave (mmWave) spectrum which are maintained by UAVs functioning as base stations (BS). In particular, we propose a new precoding strategy which incorporates the channel state information (CSI) of the eavesdropper (Eve) compromising link security. We show that our proposed precoder strategy eliminates any need for artificial noise (AN) transmission in underloaded scenarios (fewer users than number of antennas). In addition, we demonstrate that our nonlinear precoding scheme provides promising secrecy-rate performance even for overloaded scenarios at the expense of transmitting low-power AN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا