ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbogen inhalation during Non-Convulsive Status Epilepticus: A quantitative analysis of EEG recordings

48   0   0.0 ( 0 )
 نشر من قبل Peter Taylor
 تاريخ النشر 2019
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Objective: To quantify the effect of inhaled 5% carbon-dioxide/95% oxygen on EEG recordings from patients in non-convulsive status epilepticus (NCSE). Methods: Five children of mixed aetiology in NCSE were given high flow of inhaled carbogen (5% carbon dioxide/95% oxygen) using a face mask for maximum 120s. EEG was recorded concurrently in all patients. The effects of inhaled carbogen on patient EEG recordings were investigated using band-power, functional connectivity and graph theory measures. Carbogen effect was quantified by measuring effect size (Cohens d) between before, during and after carbogen delivery states. Results: Carbogens apparent effect on EEG band-power and network metrics across all patients for before-during and before-after inhalation comparisons was inconsistent across the five patients. Conclusion: The changes in different measures suggest a potentially non-homogeneous effect of carbogen on the patients EEG. Different aetiology and duration of the inhalation may underlie these non-homogeneous effects. Tuning the carbogen parameters (such as ratio between CO2 and O2, duration of inhalation) on a personalised basis may improve seizure suppression in future.



قيم البحث

اقرأ أيضاً

During wakefulness and deep sleep brain states, cortical neural networks show a different behavior, with the second characterized by transients of high network activity. To investigate their impact on neuronal behavior, we apply a pairwise Ising mode l analysis by inferring the maximum entropy model that reproduces single and pairwise moments of the neurons spiking activity. In this work we first review the inference algorithm introduced in Ferrari,Phys. Rev. E (2016). We then succeed in applying the algorithm to infer the model from a large ensemble of neurons recorded by multi-electrode array in human temporal cortex. We compare the Ising model performance in capturing the statistical properties of the network activity during wakefulness and deep sleep. For the latter, the pairwise model misses relevant transients of high network activity, suggesting that additional constraints are necessary to accurately model the data.
In this viewpoint article, we discuss the electric properties of the medium around neurons, which are important to correctly interpret extracellular potentials or electric field effects in neural tissue. We focus on how these electric properties shap e the frequency scaling of brain signals at different scales, such as intracellular recordings, the local field potential (LFP), the electroencephalogram (EEG) or the magnetoencephalogram (MEG). These signals display frequency-scaling properties which are not consistent with resistive media. The medium appears to exert a frequency filtering scaling as $1/sqrt{f}$, which is the typical frequency scaling of ionic diffusion. Such a scaling was also found recently by impedance measurements in physiological conditions. Ionic diffusion appears to be the only possible explanation to reconcile these measurements and the frequency-scaling properties found in different brain signals. However, other measurements suggest that the extracellular medium is essentially resistive. To resolve this discrepancy, we show new evidence that metal-electrode measurements can be perturbed by shunt currents going through the surface of the brain. Such a shunt may explain the contradictory measurements, and together with ionic diffusion, provides a framework where all observations can be reconciled. Finally, we propose a method to perform measurements avoiding shunting effects, thus enabling to test the predictions of this framework.
Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remain s controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double log representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using more reliable cumulative distribution functions (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.
Simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can be used to non-invasively measure the spatiotemporal dynamics of the human brain. One challenge is dealing with the artifacts that each modality introduces into the other when the two are recorded concurrently, for example the ballistocardiogram (BCG). We conducted a preliminary comparison of three different MR compatible EEG recording systems and assessed their performance in terms of single-trial classification of the EEG when simultaneously collecting fMRI. We found tradeoffs across all three systems, for example varied ease of setup and improved classification accuracy with reference electrodes (REF) but not for pulse artifact subtraction (PAS) or reference layer adaptive filtering (RLAF).
The activity of a sparse network of leaky integrate-and-fire neurons is carefully revisited with reference to a regime of a bona-fide asynchronous dynamics. The study is preceded by a finite-size scaling analysis, carried out to identify a setup wher e collective synchronization is negligible. The comparison between quenched and annealed networks reveals the emergence of substantial differences when the coupling strength is increased, via a scenario somehow reminiscent of a phase transition. For sufficiently strong synaptic coupling, quenched networks exhibit a highly bursting neural activity, well reproduced by a self-consistent approach, based on the assumption that the input synaptic current is the superposition of independent renewal processes. The distribution of interspike intervals turns out to be relatively long-tailed; a crucial feature required for the self-sustainment of the bursting activity in a regime where neurons operate on average (much) below threshold. A semi-quantitative analogy with Ornstein-Uhlenbeck processes helps validating this interpretation. Finally, an alternative explanation in terms of Poisson processes is offered under the additional assumption of mutual correlations among excitatory and inhibitory spikes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا