Gate-tunable Strong Spin-orbit Interaction in Two-dimensional Tellurium Probed by Weak-antilocalization


الملخص بالإنكليزية

Tellurium (Te) has attracted great research interest due to its unique crystal structure since 1970s. However, the conduction band of Te is rarely studied experimentally because of the intrinsic p-type nature of Te crystal. By atomic layer deposited dielectric doping technique, we are able to access the conduction band transport properties of Te in a controlled fashion. In this paper, we report on a systematic study of weak-antilocalization (WAL) effect in n-type two-dimensional (2D) Te films. We find that the WAL agrees well with Iordanskii, Lyanda-Geller, and Pikus (ILP) theory. The gate and temperature dependent WAL reveals that Dyakonov-Perel (DP) mechanism is dominant for spin relaxation and phase relaxation is governed by electron-electron (e-e) interaction. Large phase coherence length near 600nm at T=1K is obtained, together with gate tunable spin-orbit interaction (SOI). Transition from weak-localization (WL) to weak-antilocalization (WAL) depending on gate bias is also observed. These results demonstrate that newly developed solution-based synthesized Te films provide a new controllable strong SOI 2D semiconductor with high potential for spintronic applications.

تحميل البحث