ﻻ يوجد ملخص باللغة العربية
In his recent Comments E. Shuryak reiterates old, unfortunately misleading arguments in favor of deconfined Quark-Gluon Plasma (QGP) immediately above the chiral restoration pseudocritical temperature. In a Comment devoted to our view of QCD at high temperatures he does not address and even mention the essence of our arguments. In recent years a new hidden symmetry in QCD was discovered. It is a symmetry of the electric sector of QCD, that is higher than the chiral symmetry of the QCD Lagrangian as the whole. This symmetry was clearly observed above T_c in spatial correlators and very recently also in time correlators. The latter correlators are directly related to observable spectral density. Then in a model-independent way we conclude that degrees of freedom in QCD above T_c, but below roughly 3T_c, are chirally symmetric quarks bound by the chromoelectric field into color-singlet compounds without the chromomagnetic effects. This regime of QCD has been referred to as a Stringy Fluid since such objects are very reminiscent of strings.At higher temperatures there is a very smooth transition to the partonic degrees of freedom, i.e. to the QGP regime. Here we will address some of the points made by Shuryak.
While the QCD Lagrangian as the whole is only chirally symmetric, its electric part has larger chiral-spin SU(2)_{CS} and SU(2N_F) symmetries. This allows separation of the electric and magnetic interactions in a given reference frame. Artificial tru
There are no three regimes of QCD, as speculated in that paper. There are only two, separated by already well known $T_csim 155, MeV$. Above it electric interactions are screened rather then confined. Magnetic ones remain confined all the way to $Tri
We propose a practical way of circumventing the sign problem in lattice QCD simulations with a theta-vacuum term. This method is the reweighting method for the QCD Lagrangian after the chiral transformation. In the Lagrangian, the P-odd mass term as
We draw the three-flavor phase diagram as a function of light- and strange-quark masses for both zero and imaginary quark-number chemical potential, using the Polyakov-loop extended Nambu-Jona-Lasinio model with an effective four-quark vertex dependi
For special kinematic configurations involving a single momentum scale, certain standard relations, originating from the Slavnov-Taylor identities of the theory, may be interpreted as ordinary differential equations for the ``kinetic term of the gluo