ﻻ يوجد ملخص باللغة العربية
The study of thermal operations allows one to investigate the ultimate possibilities of quantum states and of nanoscale thermal machines. Whilst fairly general, these results typically do not apply to continuous variable systems and do not take into account that, in many practically relevant settings, system-environment interactions are effectively bilinear. Here we tackle these issues by focusing on Gaussian quantum states and channels. We provide a complete characterisation of the most general Gaussian thermal operation acting on an arbitrary number of bosonic modes, which turn out to be all embeddable in a Markovian dynamics, and derive necessary and sufficient conditions for state transformations under such operations in the single-mode case, encompassing states with nonzero coherence in the energy eigenbasis (i.e., squeezed states). Our analysis leads to a no-go result for the technologically relevant task of algorithmic cooling: We show that it is impossible to reduce the entropy of a system coupled to a Gaussian environment below its own or the environmental temperature, by means of a sequence of Gaussian thermal operations interspersed by arbitrary (even non-Gaussian) unitaries. These findings establish fundamental constraints on the usefulness of Gaussian resources for quantum thermodynamic processes.
Controlled quantum mechanical devices provide a means of simulating more complex quantum systems exponentially faster than classical computers. Such quantum simulators rely heavily upon being able to prepare the ground state of Hamiltonians, whose pr
According to the first and second laws of thermodynamics and the definitions of work and heat, microscopic expressions for the non-equilibrium entropy production have been achieved. Recently, a redefinition of heat has been presented in [href{Nature
Heat-Bath Algorithmic cooling (HBAC) techniques provide ways to selectively enhance the polarization of target quantum subsystems. However, the cooling in these techniques are bounded. Here we report the first experimental observation of the HBAC coo
Gaussian quantum states of bosonic systems are an important class of states. In particular, they play a key role in quantum optics as all processes generated by Hamiltonians up to second order in the field operators (i.e. linear optics and quadrature
The resource theory of thermal operations explains the state transformations that are possible in a very specific thermodynamic setting: there is only one thermal bath, auxiliary systems can only be in corresponding thermal state (free states), and t