ترغب بنشر مسار تعليمي؟ اضغط هنا

d-blink: Distributed End-to-End Bayesian Entity Resolution

102   0   0.0 ( 0 )
 نشر من قبل Neil G. Marchant
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Entity resolution (ER; also known as record linkage or de-duplication) is the process of merging noisy databases, often in the absence of unique identifiers. A major advancement in ER methodology has been the application of Bayesian generative models, which provide a natural framework for inferring latent entities with rigorous quantification of uncertainty. Despite these advantages, existing models are severely limited in practice, as standard inference algorithms scale quadratically in the number of records. While scaling can be managed by fitting the model on separate blocks of the data, such a naive approach may induce significant error in the posterior. In this paper, we propose a principled model for scalable Bayesian ER, called distributed Bayesian linkage or d-blink, which jointly performs blocking and ER without compromising posterior correctness. Our approach relies on several key ideas, including: (i) an auxiliary variable representation that induces a partition of the entities and records into blocks; (ii) a method for constructing well-balanced blocks based on k-d trees; (iii) a distributed partially-collapsed Gibbs sampler with improved mixing; and (iv) fast algorithms for performing Gibbs updates. Empirical studies on six data sets---including a case study on the 2010 Decennial Census---demonstrate the scalability and effectiveness of our approach.



قيم البحث

اقرأ أيضاً

109 - Yuening Li , Daochen Zha , Na Zou 2019
PyODDS is an end-to end Python system for outlier detection with database support. PyODDS provides outlier detection algorithms which meet the demands for users in different fields, w/wo data science or machine learning background. PyODDS gives the a bility to execute machine learning algorithms in-database without moving data out of the database server or over the network. It also provides access to a wide range of outlier detection algorithms, including statistical analysis and more recent deep learning based approaches. PyODDS is released under the MIT open-source license, and currently available at (https://github.com/datamllab/pyodds) with official documentations at (https://pyodds.github.io/).
198 - W.X. Wilcke 2020
End-to-end multimodal learning on knowledge graphs has been left largely unaddressed. Instead, most end-to-end models such as message passing networks learn solely from the relational information encoded in graphs structure: raw values, or literals, are either omitted completely or are stripped from their values and treated as regular nodes. In either case we lose potentially relevant information which could have otherwise been exploited by our learning methods. To avoid this, we must treat literals and non-literals as separate cases. We must also address each modality separately and accordingly: numbers, texts, images, geometries, et cetera. We propose a multimodal message passing network which not only learns end-to-end from the structure of graphs, but also from their possibly divers set of multimodal node features. Our model uses dedicated (neural) encoders to naturally learn embeddings for node features belonging to five different types of modalities, including images and geometries, which are projected into a joint representation space together with their relational information. We demonstrate our model on a node classification task, and evaluate the effect that each modality has on the overall performance. Our result supports our hypothesis that including information from multiple modalities can help our models obtain a better overall performance.
Point of interest (POI) data serves as a valuable source of semantic information for places of interest and has many geospatial applications in real estate, transportation, and urban planning. With the availability of different data sources, POI conf lation serves as a valuable technique for enriching data quality and coverage by merging the POI data from multiple sources. This study proposes a novel end-to-end POI conflation framework consisting of six steps, starting with data procurement, schema standardisation, taxonomy mapping, POI matching, POI unification, and data verification. The feasibility of the proposed framework was demonstrated in a case study conducted in the eastern region of Singapore, where the POI data from five data sources was conflated to form a unified POI dataset. Based on the evaluation conducted, the resulting unified dataset was found to be more comprehensive and complete than any of the five POI data sources alone. Furthermore, the proposed approach for identifying POI matches between different data sources outperformed all baseline approaches with a matching accuracy of 97.6% with an average run time below 3 minutes when matching over 12,000 POIs to result in 8,699 unique POIs, thereby demonstrating the frameworks scalability for large scale implementation in dense urban contexts.
We present ELQ, a fast end-to-end entity linking model for questions, which uses a biencoder to jointly perform mention detection and linking in one pass. Evaluated on WebQSP and GraphQuestions with extended annotations that cover multiple entities p er question, ELQ outperforms the previous state of the art by a large margin of +12.7% and +19.6% F1, respectively. With a very fast inference time (1.57 examples/s on a single CPU), ELQ can be useful for downstream question answering systems. In a proof-of-concept experiment, we demonstrate that using ELQ significantly improves the downstream QA performance of GraphRetriever (arXiv:1911.03868). Code and data available at https://github.com/facebookresearch/BLINK/tree/master/elq
Disease name recognition and normalization, which is generally called biomedical entity linking, is a fundamental process in biomedical text mining. Recently, neural joint learning of both tasks has been proposed to utilize the mutual benefits. While this approach achieves high performance, disease concepts that do not appear in the training dataset cannot be accurately predicted. This study introduces a novel end-to-end approach that combines span representations with dictionary-matching features to address this problem. Our model handles unseen concepts by referring to a dictionary while maintaining the performance of neural network-based models, in an end-to-end fashion. Experiments using two major datasets demonstrate that our model achieved competitive results with strong baselines, especially for unseen concepts during training.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا