ﻻ يوجد ملخص باللغة العربية
Two-dimensional MoS2 has emerged as promising material for nanoelectronics and spintronics due to its exotic properties. However, high contact resistance at metal semiconductor MoS2 interface still remains an open issue. Here, we report electronic properties of field effect transistor devices using monolayer MoS2 channels and permalloy (Py) as ferromagnetic (FM) metal contacts. Monolayer MoS2 channels were directly grown on SiO2/Si substrate via chemical vapor deposition technique. The increase in current with back gate voltage shows the tunability of FET characteristics. The Schottky barrier height (SBH) estimated for Py/MoS2 contacts is found to be +28.8 meV (zero-bias), which is the smallest value reported so-far for any direct metal (magnetic or non-magnetic)/monolayer MoS2 contact. With the application of gate voltage (+10 V), SBH shows a drastic reduction down to a value of -6.8 meV. The negative SBH reveals ohmic behavior of Py/MoS2 contacts. Low SBH with controlled ohmic nature of FM contacts is a primary requirement for MoS2 based spintronics and therefore using directly grown MoS2 channels in the present study can pave a path towards high performance devices for large scale applications.
In this study, a model of a Schottky-barrier carbon nanotube field- effect transistor (CNT-FET), with ferromagnetic contacts, has been developed. The emphasis is put on analysis of current-voltage characteristics as well as shot (and thermal) noise.
The observed performances of carbon nanotube field effect transistors are examined using first-principles quantum transport calculations. We focus on the nature and role of the electrical contact of Au and Pd electrodes to open-ended semiconducting n
We discuss the high-bias electrical characteristics of back-gated field-effect transistors with CVD-synthesized bilayer MoS2 channel and Ti Schottky contacts. We find that oxidized Ti contacts on MoS2 form rectifying junctions with ~0.3 to 0.5 eV Sch
In this letter, we demonstrate high-performance lateral AlGaN/GaN Schottky barrier diodes (SBD) on Si substrate with a recessed-anode structure. The optimized rapid etch process provides results in improving etching quality with a 0.26-nm roughness o
Metal contacts are a key limiter to the electronic performance of two-dimensional (2D) semiconductor devices. Here we present a comprehensive study of contact interfaces between seven metals (Y, Sc, Ag, Al, Ti, Au, Ni, with work functions from 3.1 to