ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian optimization of a free-electron laser

393   0   0.0 ( 0 )
 نشر من قبل Joseph Duris
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Linac Coherent Light Source changes configurations multiple times per day, necessitating fast tuning strategies to reduce setup time for successive experiments. To this end, we employ a Bayesian approach to transport optics tuning to optimize groups of quadrupole magnets. We use a Gaussian process to provide a probabilistic model of the machine response with respect to control parameters from a modest number of samples. Subsequent samples are selected during optimization using a statistical test combining the model prediction and uncertainty. The model parameters are fit from archived scans, and correlations between devices are added from a simple beam transport model. The result is a sample-efficient optimization routine, which we show significantly outperforms existing optimizers.



قيم البحث

اقرأ أيضاً

Laser Plasma Accelerators (LPA) can sustain GeV/m accelerating fields offering outstanding new possibilities for compact applications. Despite the impressive recent developments, the LPA beam quality is still significantly lower than in the conventio nal radio-frequency accelerators, which is an issue in the cases of demanding applications such as Free Electron Lasers (FELs). If the electron beam duration is below few tens of femtosecond keeping pC charges, the mrad level divergence and few percent energy spread are particularly limiting. Several concepts of transfer line were proposed to mitigate those intrinsic properties targetting undulator radiation applications. We study here the robustness of the chromatic matching strategy for FEL amplification at 200~nm in a dedicated transport line, and analyze its sensitivity to several parameters. We consider not only the possible LPA source jitters, but also various realistic defaults of the equipment such as magnetic elements misalignements or focussing strength errors, unperfect undulator fields, etc...
An improved analysis for single particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the AMO instrument at the Linac Coherent Light Source (LCLS) as part of th e SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from the half of the detector and small fraction of single hits. General SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus structure determination step. The presented processing pipeline allowed us to determine the three-dimensional structure of the bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.
Nuclear Reaction Analysis with ${}^{3}$He holds the promise to measure Deuterium depth profiles up to large depths. However, the extraction of the depth profile from the measured data is an ill-posed inversion problem. Here we demonstrate how Bayesia n Experimental Design can be used to optimize the number of measurements as well as the measurement energies to maximize the information gain. Comparison of the inversion properties of the optimized design with standard settings reveals huge possible gains. Application of the posterior sampling method allows to optimize the experimental settings interactively during the measurement process.
It is shown via theory and simulation that the resonant frequency of a Free Electron Laser may be modulated to obtain an FEL interaction with a frequency bandwidth which is at least an order of magnitude greater than normal FEL operation. The system is described in the linear regime by a summation over exponential gain modes, allowing the amplification of multiple light frequencies simultaneously. Simulation in 3D demonstrates the process for parameters of the UKs CLARA FEL test facility currently under construction. This new mode of FEL operation has close analogies to Frequency Modulation in a conventional cavity laser. This new, wide bandwidth mode of FEL operation scales well for X-ray generation and offers users a new form of high-power FEL output.
An optics-free method is proposed to generate X-ray radiation with spatially variant states of polarization via an afterburner extension to a Free Electron Laser (FEL). Control of the polarization in the transverse plane is obtained through the overl ap of different coherent transverse light distributions radiated from a bunched electron beam in two consecutive orthogonally polarised undulators. Different transverse profiles are obtained by emitting at a higher harmonic in one or both of the undulators. This method enables the generation of beams structured in their intensity, phase, and polarization - so-called Poincare beams - at high powers with tunable wavelengths. Simulations are used to demonstrate the generation of two different classes of light with spatially inhomogeneous polarization - cylindrical vector beams and full Poincare beams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا