ﻻ يوجد ملخص باللغة العربية
We present a new approach to ubiquitous sensing for indoor applications, using high-efficiency and low-cost indoor perovksite photovoltaic cells as external power sources for backscatter sensors. We demonstrate wide-bandgap perovskite photovoltaic cells for indoor light energy harvesting with the 1.63eV and 1.84 eV devices demonstrate efficiencies of 21% and 18.5% respectively under indoor compact fluorescent lighting, with a champion open-circuit voltage of 0.95 V in a 1.84 eV cell under a light intensity of 0.16 mW/cm2. Subsequently, we demonstrate a wireless temperature sensor self-powered by a perovskite indoor light-harvesting module. We connect three perovskite photovoltaic cells in series to create a module that produces 14.5 uW output power under 0.16 mW/cm2 of compact fluorescent illumination with an efficiency of 13.2%. We use this module as an external power source for a battery-assisted RFID temperature sensor and demonstrate a read range by of 5.1 meters while maintaining very high frequency measurements every 1.24 seconds. Our combined indoor perovskite photovoltaic modules and backscatter radio-frequency sensors are further discussed as a route to ubiquitous sensing in buildings given their potential to be manufactured in an integrated manner at very low-cost, their lack of a need for battery replacement and the high frequency data collection possible.
The self-powered sensing system could harness ambient energy to power the sensor without the need for external electrical energy. Recently, the concept of photovoltaic (PV) self-powered gas sensing has aroused wider attentions due to room-temperature
Photovoltaic (PV) cells have the potential to serve as on-board power sources for low-power IoT devices. Here, we explore the use of perovskite solar cells to power Radio Frequency (RF) backscatter-based IoT devices with a few {mu}W power demand. Per
The power conversion efficiency of an ultrathin CIGS solar cell was maximized using a coupled optoelectronic model to determine the optimal bandgap grading of the nonhomogeneous CIGS layer in the thickness direction. The bandgap of the CIGS layer was
We explore the degradation behaviour under continuous illumination and direct oxygen exposure of inverted unencapsulated formamidinium(FA)0.83Cs0.17Pb(I0.8Br0.2)3, CH3NH3PbI3, and CH3NH3PbI3-xClx perovskite solar cells. We continuously test the devic
An optoelectronic optimization was carried out for an AlGaAs solar cell containing (i) an n-AlGaAs absorber layer with a graded bandgap and (ii) a periodically corrugated Ag backreflector combined with localized ohmic Pd-Ge-Au backcontacts. The bandg