ﻻ يوجد ملخص باللغة العربية
Mixtures-of-Experts models and their maximum likelihood estimation (MLE) via the EM algorithm have been thoroughly studied in the statistics and machine learning literature. They are subject of a growing investigation in the context of modeling with high-dimensional predictors with regularized MLE. We examine MoE with Gaussian gating network, for clustering and regression, and propose an $ell_1$-regularized MLE to encourage sparse models and deal with the high-dimensional setting. We develop an EM-Lasso algorithm to perform parameter estimation and utilize a BIC-like criterion to select the model parameters, including the sparsity tuning hyperparameters. Experiments conducted on simulated data show the good performance of the proposed regularized MLE compared to the standard MLE with the EM algorithm.
Mixture of Experts (MoE) are successful models for modeling heterogeneous data in many statistical learning problems including regression, clustering and classification. Generally fitted by maximum likelihood estimation via the well-known EM algorith
Mixtures-of-Experts (MoE) are conditional mixture models that have shown their performance in modeling heterogeneity in data in many statistical learning approaches for prediction, including regression and classification, as well as for clustering. T
We provide a theoretical treatment of over-specified Gaussian mixtures of experts with covariate-free gating networks. We establish the convergence rates of the maximum likelihood estimation (MLE) for these models. Our proof technique is based on a n
Deep neural networks (DNNs) have become increasingly popular and achieved outstanding performance in predictive tasks. However, the DNN framework itself cannot inform the user which features are more or less relevant for making the prediction, which
In unsupervised classification, Hidden Markov Models (HMM) are used to account for a neighborhood structure between observations. The emission distributions are often supposed to belong to some parametric family. In this paper, a semiparametric model