ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaos in nanomagnet via feedback current

52   0   0.0 ( 0 )
 نشر من قبل Tomohiro Taniguchi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinear magnetization dynamics excited by spin-transfer effect with feedback current is studied both numerically and analytically. The numerical simulation of the Landau-Lifshitz-Gilbert equation indicates the positive Lyapunov exponent for a certain range of the feedback rate, which identifies the existence of chaos in a nanostructured ferromagnet. Transient behavior from chaotic to steady oscillation is also observed in another range of the feedback parameter. An analytical theory is also developed, which indicates the appearance of multiple attractors in a phase space due to the feedback current. An instantaneous imbalance between the spin-transfer torque and damping torque causes a transition between the attractors, and results in the complex dynamics.



قيم البحث

اقرأ أيضاً

The role of the feedback effect on physical reservoir computing is studied theoretically by solving the vortex-core dynamics in a nanostructured ferromagnet. Although the spin-transfer torque due to the feedback current makes the vortex dynamics comp lex, it is clarified that the feedback effect does not always contribute to the enhancement of the memory function in a physical reservoir. The memory function, characterized by the correlation coefficient between the input data and the dynamical response of the vortex core, becomes large when the delay time of the feedback current is not an integral multiple of the pulse width. On the other hand, the memory function remains small when the delay time is an integral multiple of the pulse width. As a result, a periodic behavior for the short-term memory capacity is observed with respect to the delay time, the phenomenon of which can be attributed to correlations between the virtual neurons via the feedback current.
A hybrid structure combining the advantages of topological insulator (TI), dielectric ferromagnet (FM), and graphene is investigated to realize the electrically controlled correlation between electronic and magnetic subsystems for low-power, high-fun ctional applications. Two-dimensional Dirac fermion states provide an ideal environment to facilitate strong coupling through the surface interactions with proximate materials. The unique properties of FM-TI and FM-graphene interfaces make it possible for active manipulation and propagation, respectively, of the information state variable based solely on the spin logic platform through electrical gate biases. Our theoretical analysis verifies the feasibility of the concept for logic application with both current-driven and current-less interconnect approaches. The device/circuit characteristics are also examined in realistic conditions, suggesting the desired low-power performance with the estimated energy consumption for COPY/NOT as low as the textit{attojoule} level.
Thermally-activated magnetization dynamics of small nanoparticles subject to microwave (AC) external fields is studied. It is shown that, under sufficiently strong microwave excitations, chaotic magnetization dynamics may occur close to saddle-type h eteroclinic connections, and this heteroclinic chaos is responsible for the erosion of the safe basin around stable magnetization states. The erosion phenomenon is then connected to the escape problem from the energy well surrounding a stable equilibrium. It is shown that escape times follow a generalized Arrhenius law governed by temperature, microwave field amplitude, frequency and heteroclinic chaos threshold.
A magnetic bimeron is a topologically non-trivial spin texture carrying an integer topological charge, which can be regarded as the counterpart of skyrmion in easy-plane magnets. The controllable creation and manipulation of bimerons are crucial for practical applications based on topological spin textures. Here, we analytically and numerically study the dynamics of an antiferromagnetic bimeron driven by a spin current. Numerical simulations demonstrate that the spin current can create an isolated bimeron in the antiferromagnetic thin film via the damping-like spin torque. The spin current can also effectively drive the antiferromagnetic bimeron without a transverse drift. The steady motion of an antiferromagnetic bimeron is analytically derived and is in good agreement with the simulation results. Also, we find that the alternating-current-induced motion of the antiferromagnetic bimeron can be described by the Duffing equation due to the presence of the nonlinear boundary-induced force. The associated chaotic behavior of the bimeron is analyzed in terms of the Lyapunov exponents. Our results demonstrate the inertial dynamics of an antiferromagnetic bimeron, and may provide useful guidelines for building future bimeron-based spintronic devices.
A mutual synchronization of spin-torque oscillators coupled through current injection is studied theoretically. Models of electrical coupling in parallel and series circuits are proposed. Solving the Landau-Lifshitz-Gilbert equation, excitation of in -phase or antiphase synchronization, depending on the ways the oscillators are connected, is found. It is also found from both analytical and numerical calculations that the current-frequency relations for both parallel and series circuits are the same as that for a single spin-torque oscillator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا