ﻻ يوجد ملخص باللغة العربية
The standard neutrino oscillation paradigm predicts almost equal fractions of astrophysical neutrino flavors at Earth regardless of their production ratio at the sources. Therefore, identification of astrophysical tau neutrinos could not only reconfirm the astrophysical neutrino flux measured by IceCube, but also is essential in precisely determining the astrophysical neutrino flavor ratio at Earth, which is an important probe for physics beyond the Standard Model over astronomical baselines. A tau neutrino undergoing a charged current (CC) interaction in IceCube could produce a double deposition of energy, with the first one from the CC hadronic shower and the second from the subsequent tau lepton decay shower. Above an energy of ~100 TeV, such consecutive energy depositions might be resolvable in the sensor waveforms and hence can be a signature of an individual tau neutrino interaction in IceCube. We will present the results of a search for astrophysical tau neutrinos in IceCube waveforms with improved double pulse waveform identification techniques and using 8 years of data.
High-energy (TeV-PeV) cosmic neutrinos are expected to be produced in extremely energetic astrophysical sources such as active galactic nuclei. The IceCube Neutrino Observatory at the South Pole has recently detected a diffuse astrophysical neutrino
DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCubes energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus
We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between May 15th 2012 and April 30th 2013. While the search methods employed in this analysis are similar to th
We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010 -- 2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated ($si
Multi-messenger astrophysics will enable the discovery of new astrophysical neutrino sources and provide information about the mechanisms that drive these objects. We present a curated online catalog of astrophysical neutrino candidates. Whenever sin