ترغب بنشر مسار تعليمي؟ اضغط هنا

SMA Observations of Haro 2: Molecular Gas around a Hot Superbubble

111   0   0.0 ( 0 )
 نشر من قبل Sara Beck
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Haro 2 , a nearby dwarf starburst dwarf galaxy with strong Ly alpha emission, hosts a starburst that has created outflows and filaments. The clear evidence for galactic outflow makes it an ideal candidate for studying the effects of feedback on molecular gas in a dwarf galaxy. We observed CO(2-1) in Haro 2 at the Submillimeter Array in the compact and extended configurations, and have mapped the molecular emission with velocity resolution 4.1 km/s and spatial resolution 2.0x1.6. With this significant increase of resolution over previous measurements we see that the molecular gas comprises two components: bright clumps associated with the embedded star clusters of the starburst, and fainter extended emission east of the starburst region. The extended emission coincides with an X-ray bubble and has the kinematic signatures of a shell or bubble expanding with velocity +-35 km/s. We suggest that the starburst winds that created the X-Ray bubble have entrained molecular gas, and that the apparent velocity gradient across the photometric axis is an artifact caused by the outflow. The molecular and X-ray activity is on the east of the galaxy and the ionized outflow and optical filaments are west; their relationship is not clear.



قيم البحث

اقرأ أيضاً

We present Submillimeter Array (SMA) observations toward the high-mass star-forming region IRAS 18566+0408. Observations at 1.3 mm continuum and in several molecular line transitions were performed in the compact (2.4 angular resolution) and very-ext ended (~0.4 angular resolution) configurations. The continuum emission from the compact configuration shows a dust core of 150 Msun, while the very-extended configuration reveals a dense (2.6 x 10^7 cm^-3) and compact (~4,000 AU) condensation of 8 Msun. We detect 31 molecular transitions from 14 species including CO isotopologues, SO, CH3OH, OCS, and CH3CN. Using the different k-ladders of the CH3CN line, we derive a rotational temperature at the location of the continuum peak of 240 K. The 12CO(2-1), 13CO(2-1), and SO(6_5-5_4) lines reveal a molecular outflow at PA ~135^o centered at the continuum peak. The extended 12CO(2-1) emission has been recovered with the IRAM 30 m telescope observations. Using the combined data set, we derive an outflow mass of 16.8 Msun. The chemically rich spectrum and the high rotational temperature confirm that IRAS 18566+0408 is harboring a hot molecular core. We find no clear velocity gradient that could suggest the presence of a rotational disk-like structure, even at the high resolution observations obtained with the very-extended configuration.
153 - Alba M. Lumbreras 2014
We present archival high angular resolution ($sim$ 2$$) $^{12}$CO(3-2) line and continuum submillimeter observations of the young stellar object HL Tau made with the Submillimeter Array (SMA). The $^{12}$CO(3-2) line observations reveal the presence of a compact and wide opening angle bipolar outflow with a northeast and southwest orientation (P.A. = 50$^circ$), and that is associated with the optical and infrared jet emanating from HL Tau with a similar orientation. On the other hand, the 850 $mu$m continuum emission observations exhibit a strong and compact source in the position of HL Tau that has a spatial size of $sim$ 200 $times$ 70 AU with a P.A. $=$ 145$^circ$, and a dust mass of around 0.1 M$_odot$. These physical parameters are in agreement with values obtained recently from millimeter observations. This submillimeter source is therefore related with the disk surrounding HL Tau.
110 - D. Espada , S. Martin , S. Verley 2018
Mergers of galaxies are an important mode for galaxy evolution because they serve as an efficient trigger of powerful starbursts. However, observational studies of the molecular gas properties during their early stages are scarce. We present interfer ometric CO(2-1) maps of two luminous infrared galaxies (LIRGs), NGC 3110 and NGC 232, obtained with the Submillimeter Array (SMA) with ~ 1 kpc resolution. While NGC 3110 is a spiral galaxy interacting with a minor (14:1 stellar mass) companion, NGC 232 is interacting with a similarly sized object. We find that such interactions have likely induced in these galaxies enhancements in the molecular gas content and central concentrations, partly at the expense of atomic gas. The obtained molecular gas surface densities in their circumnuclear regions are $Sigma_{rm mol}~gtrsim10^{2.5}$ M$_odot$ pc$^{-2}$, higher than in non-interacting objects by an order of magnitude. Gas depletion times of ~ 0.5 - 1 Gyr are found for the different regions, lying in between non-interacting disk galaxies and the starburst sequence. In the case of NGC 3110, the spiral arms show on average 0.5 dex shorter depletion times than in the circumnuclear regions if we assume a similar H$_2$-CO conversion factor. We show that even in the early stages of the interaction with a minor companion, a starburst is formed along the circumnuclear region and spiral arms, where a large population of SSCs is found (~350), and at the same time a large central gas concentration is building up which might be the fuel for an active galactic nucleus. The main morphological properties of the NGC 3110 system are reproduced by our numerical simulations and allow us to estimate that the current epoch of the interaction is at ~ 150 Myrs after closest approach.
We report ALMA and SMA observations of the luminous infrared merger NGC 3256, the most luminous galaxy within z=0.01. Both of the two merger nuclei separated by 5 (0.8 kpc) on the sky have a compact concentration of molecular gas, i.e., nuclear disks with Sigma_mol > 10^3 Msun pc^-2. The one at the northern nucleus is face-on while the southern nuclear disk is almost edge-on. The northern nucleus is more massive and has molecular arcs and spiral arms around. The high-velocity molecular gas previously found in the system is resolved to two molecular outflows associated with each of the two nuclei. The molecular outflow from the northern nuclear disk is part of a starburst-driven superwind seen nearly pole on. Its maximum velocity is >750 km/s and its mass outflow rate is estimated to be > 60 Msun/yr for a conversion factor N_{H_2}/I_{CO(1-0)}=1x10^20 cm^-2/(K km/s). The outflow from the southern nucleus is a highly collimated bipolar molecular jet seen nearly edge-on. Its line-of-sight velocity increases with distance out to 300 pc from the southern nucleus. Its maximum de-projected velocity is ~2000 km/s for the estimated inclination and should exceed 1000 km/s even allowing for its uncertainty. The mass outflow rate is estimated to be >50 Msun/yr for this outflow. There are possible signs that this southern outflow has been driven by a bipolar radio jet from an AGN that became inactive very recently. The sum of these outflow rates, although subject to the uncertainty in the molecular mass estimate, either exceeds or compares to the total star formation rate in NGC 3256. The feedback from nuclear activities in the form of molecular outflows is therefore significant in the gas consumption budget, and hence evolution, of this luminous infrared galaxy. (abridged)
The lack of adequate X-ray observing capability is seriously impeding the progress in understanding the hot phase of circumgalactic medium (CGM), which is predicted to extend to the virial radius of a galaxy or beyond, and thus in acquiring key bound ary conditions for studying galaxy evolution. To this end, the Hot Universe Baryon Surveyor (textit{HUBS}) is proposed. textit{HUBS} is designed to probe hot CGM by detecting its emission or absorption lines with a non-dispersive X-ray spectrometer of high resolution and high throughput. The spectrometer consists of a $60times60$ array of microcalorimeters, with each detector providing an energy resolution of $2~mathrm{eV}$, and is placed in the focal plane of an X-ray telescope of $1^{circ}$ field-of-view. With such a design, the spectrometer is also expected to enable studies of intra-group medium (IGrM) and the outer region of intra-cluster medium (ICM). To assess the scientific potential of textit{HUBS}, we created mock observations of galaxies, groups, and clusters at different redshifts with the tng simulation. Focusing exclusively on emission studies in this work, we took into account the effects of light cone, Galactic foreground emission, and background AGN contribution in the mock observations. From the observations, we made mock X-ray images and spectra, analyzed them to derive the properties of the emitting gas in each case, and compared the results with the input parameters from the simulation. The results show that textit{HUBS} is well suited for studying hot CGM at low redshifts. The redshift range is significantly extended for measuring IGrM and ICM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا