ﻻ يوجد ملخص باللغة العربية
We introduce Galois families of modular forms. They are a new kind of family coming from Galois representations of the absolute Galois groups of rational function fields over the rational field. We exhibit some examples and provide an infinite Galois family of non-liftable weight one Katz modular eigenforms over an algebraic closure of F_p for p in {3,5,7,11}.
In this paper we explicitly compute mod-l Galois representations associated to modular forms. To be precise, we look at cases with l<=23 and the modular forms considered will be cusp forms of level 1 and weight up to 22. We present the result in term
We establish an isomorphism between certain complex-valued and vector-valued modular form spaces of half-integral weight, generalizing the well-known isomorphism between modular forms for $Gamma_0(4)$ with Kohnens plus condition and modular forms for
For each of the groups PSL2(F25), PSL2(F32), PSL2(F49), PGL2(F25), and PGL2(F27), we display the first explicitly known polynomials over Q having that group as Galois group. Each polynomial is related to a Galois representation associated to a modula
We investigate non-vanishing properties of $L(f,s)$ on the real line, when $f$ is a Hecke eigenform of half-integral weight $k+{1over 2}$ on $Gamma_0(4).$
In this note, we prove that there exists a classical Hilbert modular cusp form over Q(sqrt{5}) of partial weight one which does not arise from the induction of a Grossencharacter from a CM extension of Q(sqrt{5}).