ﻻ يوجد ملخص باللغة العربية
The ability to gain insights into the 3D properties of artificial or biological systems is often critical. However, 3D structures are difficult to retrieve at low dose and with extremely fast processing, as most techniques are based on acquiring and computing hundreds of 2D angular projections. This is even more challenging with ultrashort X-rays which allow realizing nanometre scale studies and ultrafast time resolved 2D movies. Here we show that computer stereo vision concepts can be transposed to X-rays. We demonstrate nanoscale three-dimensional reconstruction from a single ultrafast acquisition. Two diffraction patterns are recorded simultaneously on a single CCD camera and after phase retrieval two stereo images are reconstructed. A 3D representation of the sample is then computed from quantitative disparity maps with about 130x130x380nm3 voxel resolution in a snapshot of 20 femtoseconds. We extend our demonstration to phase contrast X-ray stereo imaging and reveal hidden 3D features of a sample. Computed phase stereo imaging will find scientific applications at X-ray free electron lasers, synchrotrons and laser-based sources, but also in fast industrial and medical 3D diagnostics.
An outstanding question in X-ray single particle imaging experiments has been the feasibility of imaging sub 10-nm-sized biomolecules under realistic experimental conditions where very few photons are expected to be measured in a single snapshot and
Low dose computed tomography (LDCT) is desirable for both diagnostic imaging and image guided interventions. Denoisers are openly used to improve the quality of LDCT. Deep learning (DL)-based denoisers have shown state-of-the-art performance and are
Mask-based lensless imagers are smaller and lighter than traditional lensed cameras. In these imagers, the sensor does not directly record an image of the scene; rather, a computational algorithm reconstructs it. Typically, mask-based lensless imager
Because image sensor chips have a finite bandwidth with which to read out pixels, recording video typically requires a trade-off between frame rate and pixel count. Compressed sensing techniques can circumvent this trade-off by assuming that the imag
Lensless cameras provide a framework to build thin imaging systems by replacing the lens in a conventional camera with an amplitude or phase mask near the sensor. Existing methods for lensless imaging can recover the depth and intensity of the scene,