ترغب بنشر مسار تعليمي؟ اضغط هنا

Bright C2H emission in protoplanetary disks in Lupus: high volatile C/O>1 ratios

122   0   0.0 ( 0 )
 نشر من قبل Anna Miotello
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ALMA surveys have shown that CO emission in protoplanetary disks is much fainter than expected. Accordingly, CO-based gas masses and gas/dust ratios are orders of magnitude lower than previously thought. This may be explained either as fast gas dispersal, or as chemical evolution and locking up of volatiles in larger bodies leading to the low observed CO fluxes. The latter processes lead to enhanced C/O ratios in the gas, which may be reflected in enhanced abundances of molecules like C2H. The goal of this work is to employ C2H observations to understand whether low CO fluxes are caused by volatile depletion, or by fast gas dissipation. We present ALMA Cycle 4 C2H observations of a subsample of nine sources in Lupus. The integrated C2H emission is determined and compared to previous CO observations and model predictions. Seven out of nine disks are detected in C2H, whose line emission is almost as bright as 13CO. All detections are significantly brighter than the typical sensitivity of the observations, hinting at a bimodal distribution of the C2H line intensities. When compared with DALI models, the observed C2H fluxes can be reproduced only if some level of volatile carbon and oxygen depletion is allowed and C/O>1 in the gas. Models with reduced gas/dust ratios fail instead to reproduce the observations. A steeper than linear correlation between C2H and CN emission line is found. This is linked to the fact that C2H emission lines are affected more strongly by C/O variations than CN lines. Ring-like structures are detected both in C2H and in continuum emission but, as for CN, they do not seem to be connected. Sz 71 shows ring shaped emission in both C2H and CN with the location of the peak intensity coinciding. Our new ALMA C2H observations favour volatile carbon and oxygen depletion rather than fast gas dispersal to explain the faint CO observations for most of the disks.



قيم البحث

اقرأ أيضاً

The volatile composition of a planet is determined by the inventory of gas and ice in the parent disk. The volatile chemistry in the disk is expected to evolve over time, though this evolution is poorly constrained observationally. We present ALMA ob servations of C18O, C2H, and the isotopologues H13CN, HC15N, and DCN towards five Class 0/I disk candidates. Combined with a sample of fourteen Class II disks presented in Bergner et al. (2019b), this data set offers a view of volatile chemical evolution over the disk lifetime. Our estimates of C18O abundances are consistent with a rapid depletion of CO in the first ~0.5-1 Myr of the disk lifetime. We do not see evidence that C2H and HCN formation are enhanced by CO depletion, possibly because the gas is already quite under-abundant in CO. Further CO depletion may actually hinder their production by limiting the gas-phase carbon supply. The embedded sources show several chemical differences compared to the Class II stage, which seem to arise from shielding of radiation by the envelope (impacting C2H formation and HC15N fractionation) and sublimation of ices from infalling material (impacting HCN and C18O abundances). Such chemical differences between Class 0/I and Class II sources may affect the volatile composition of planet-forming material at different stages in the disk lifetime.
We study the PAH emission from protoplanetary disks. First, we discuss the dependence of the PAH band ratios on the hardness of the absorbed photons and the temperature of the stars. We show that the photon energy together with a varying degree of th e PAH hydrogenation accounts for most of the observed PAH band ratios without the need to change the ionization degree of the molecules. We present an accurate treatment of stochastic heated grains in a vectorized three dimensional Monte Carlo dust radiative transfer code. The program is verified against results using ray tracing techniques. Disk models are presented for T Tauri and Herbig Ae stars. Particular attention is given to the photo-dissociation of the molecules. We consider beside PAH destruction also the survival of the molecules by vertical mixing within the disk. By applying typical X-ray luminosities the model accounts for the low PAH detection probability observed in T Tauri and the high PAH detection statistics found in Herbig Ae disks. Spherical halos above the disks are considered. We show that halos reduce the observed PAH band-to-continuum ratios when observed at high inclination. Finally, mid-IR images of disks around Herbig Ae disks are presented. We show that they are easier to resolve when PAH emission dominate.
A large fraction of observed protoplanetary disks in nearby Star-Forming Regions (SFRs) are fainter than expected in CO isotopologue emission. Disks not detected in 13CO line emission are also faint and often unresolved in the continuum emission at a n angular resolution of around 0.2 arcseconds. Focusing on the Lupus SFR, the aim of this work is to investigate whether the population of CO-faint disks comprises radially extended and low mass disks - as commonly assumed so far - or if it is of intrinsically radially compact disks, an interpretation that we propose in this paper. The latter scenario was already proposed for individual sources or small samples of disks, while this work targets a large population of disks in a single SFR for which statistical arguments can be made. A new grid of physical-chemical models of compact disks has been run with DALI in order to cover a region of the parameter space that had not been explored before with this code. Such models have been compared with 12CO and 13CO ALMA observations of faint disks in Lupus. Disks that are not detected in 13CO emission and with faint or undetected 12CO emission are consistent with compact disk models. For radially compact disk, the emission of CO isotopologues is mostly optically thick and it scales with the surface area: i.e., it is fainter for smaller objects. The fraction of compact disks is potentially between roughly 50% and 60% of the entire Lupus sample. Deeper observations of 12CO and 13CO at a moderate angular resolution will allow us to distinguish whether faint disks are intrinsically compact, or if they are extended but faint, without the need of resolving them. If the fainter end of the disk population observed by ALMA disk surveys is consistent with such objects being very compact, this will either create a tension with viscous spreading or require MHD winds or external processes to truncate the disks.
Molecular lines observed towards protoplanetary disks carry information about physical and chemical processes associated with planet formation. We present ALMA Band 6 observations of C2H, HCN, and C18O in a sample of 14 disks spanning a range of ages , stellar luminosities, and stellar masses. Using C2H and HCN hyperfine structure fitting and HCN/H13CN isotopologue analysis, we extract optical depth, excitation temperature, and column density radial profiles for a subset of disks. C2H is marginally optically thick (tau ~1-5) and HCN is quite optically thick (tau ~ 5-10) in the inner 200 AU. The extracted temperatures of both molecules are low (10-30K), indicative of either sub-thermal emission from the warm disk atmosphere or substantial beam dilution due to chemical substructure. We explore the origins of C2H morphological diversity in our sample using a series of toy disk models, and find that disk-dependent overlap between regions with high UV fluxes and high atomic carbon abundances can explain a wide range of C2H emission features (e.g. compact vs. extended and ringed vs. ringless emission). We explore the chemical relationship between C2H, HCN, and C18O and find a positive correlation between C2H and HCN fluxes, but no relationship between C2H or HCN with C18O fluxes. We also see no evidence that C2H and HCN are enhanced with disk age. C2H and HCN seem to share a common driver, however more work remains to elucidate the chemical relationship between these molecules and the underlying evolution of C, N, and O chemistries in disks.
103 - M. Tazzari , L. Testi , A. Natta 2017
The formation of planets strongly depends on the total amount as well as on the spatial distribution of solids in protoplanetary disks. Thanks to the improvements in resolution and sensitivity provided by ALMA, measurements of the surface density of mm-sized grains are now possible on large samples of disks. Such measurements provide statistical constraints that can be used to inform our understanding of the initial conditions of planet formation. We analyze spatially resolved observations of 36 protoplanetary disks in the Lupus star forming complex from our ALMA survey at 890 micron, aiming to determine physical properties such as the dust surface density, the disk mass and size and to provide a constraint on the temperature profile. We fit the observations directly in the uv-plane using a two-layer disk model that computes the 890 micron emission by solving the energy balance at each disk radius. For 22 out of 36 protoplanetary disks we derive robust estimates of their physical properties. The sample covers stellar masses between ~0.1 and ~2 Solar masses, and we find no trend between the average disk temperatures and the stellar parameters. We find, instead, a correlation between the integrated sub-mm flux (a proxy for the disk mass) and the exponential cut-off radii (a proxy of the disk size) of the Lupus disks. Comparing these results with observations at similar angular resolution of Taurus-Auriga/Ophiuchus disks found in literature and scaling them to the same distance, we observe that the Lupus disks are generally fainter and larger at a high level of statistical significance. Considering the 1-2 Myr age difference between these regions, it is possible to tentatively explain the offset in the disk mass/disk size relation with viscous spreading, however with the current measurements other mechanisms cannot be ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا