A partial action is associated with a normal weakly left resolving labelled space such that the crossed product and labelled space $C^*$-algebras are isomorphic. An improved characterization of simplicity for labelled space $C^*$-algebras is given and applied to $C^*$-algebras of subshifts.
We study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. We develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to
our context. We complement our generic results with the detailed study of many important special cases. In particular we study crossed products of tensor algebras, triangular AF algebras and various associated C*-algebras. We make contributions to the study of C*-envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. We also answer questions from the pertinent literature.
Motivated by Exels inverse semigroup approach to combinatorial C*-algebras, in a previous work the authors defined an inverse semigroup associated with a labelled space. We construct a representation of the C*-algebra of a labelled space, inspired by
how one might cut or glue labelled paths together, that proves that non-zero elements in the inverse semigroup correspond to non-zero elements in the C*-algebra. We also show that the spectrum of its diagonal C*-subalgebra is homeomorphic to the tight spectrum of the inverse semigroup associated with the labelled space.
We consider a twisted noncommutative join procedure for unital $C^*$-algebras which admit actions by a compact abelian group $G$ and its discrete abelian dual $Gamma$, so that we may investigate an analogue of Baum-Dabrowski-Hajac noncommutative Bors
uk-Ulam theory in the twisted setting. Namely, under what conditions is it guaranteed that an equivariant map $phi$ from a unital $C^*$-algebra $A$ to the twisted join of $A$ and $C^*(Gamma)$ cannot exist? This pursuit is motivated by the twisted analogues of even spheres, which admit the same $K_0$ groups as even spheres and have an analogous Borsuk-Ulam theorem that is detected by $K_0$, despite the fact that the objects are not themselves deformations of a sphere. We find multiple sufficient conditions for twisted Borsuk-Ulam theorems to hold, one of which is the addition of another equivariance condition on $phi$ that corresponds to the choice of twist. However, we also find multiple examples of equivariant maps $phi$ that exist even under fairly restrictive assumptions. Finally, we consider an extension of unital contractibility (in the sense of Dabrowski-Hajac-Neshveyev) modulo $k$.
Let $(mathcal G, Sigma)$ be an ordered abelian group with Haar measure $mu$, let $(mathcal A, mathcal G, alpha)$ be a dynamical system and let $mathcal Artimes_{alpha} Sigma $ be the associated semicrossed product. Using Takai duality we establish a
stable isomorphism [ mathcal Artimes_{alpha} Sigma sim_{s} big(mathcal A otimes mathcal K(mathcal G, Sigma, mu)big)rtimes_{alphaotimes {rm Ad}: rho} mathcal G, ] where $mathcal K(mathcal G, Sigma, mu)$ denotes the compact operators in the CSL algebra ${rm Alg}:mathcal L(mathcal G, Sigma, mu)$ and $rho$ denotes the right regular representation of $mathcal G$. We also show that there exists a complete lattice isomorphism between the $hat{alpha}$-invariant ideals of $mathcal Artimes_{alpha} Sigma$ and the $(alphaotimes {rm Ad}: rho)$-invariant ideals of $mathcal A otimes mathcal K(mathcal G, Sigma, mu)$. Using Takai duality we also continue our study of the Radical for the crossed product of an operator algebra and we solve open problems stemming from the earlier work of the authors. Among others we show that the crossed product of a radical operator algebra by a compact abelian group is a radical operator algebra. We also show that the permanence of semisimplicity fails for crossed products by $mathbb R$. A final section of the paper is devoted to the study of radically tight dynamical systems, i.e., dynamical systems $(mathcal A, mathcal G, alpha)$ for which the identity ${rm Rad}(mathcal A rtimes_alpha mathcal G)=({rm Rad}:mathcal A) rtimes_alpha mathcal G$ persists. A broad class of such dynamical systems is identified.
Gilles G. de Castro
,Daniel W. van Wyk
.
(2019)
.
"Labelled space $C^*$-algebras as partial crossed products and a simplicity characterization"
.
Gilles de Castro
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا