ﻻ يوجد ملخص باللغة العربية
Generalizing our ideas in [arXiv:1006.3313], we explain how topologically-twisted N=2 gauge theory on a four-manifold with boundary, will allow us to furnish purely physical proofs of (i) the Atiyah-Floer conjecture, (ii) Munozs theorem relating quantum and instanton Floer cohomology, (iii) their monopole counterparts, and (iv) their higher rank generalizations. In the case where the boundary is a Seifert manifold, one can also relate its instanton Floer homology to modules of an affine algebra via a 2d A-model with target the based loop group. As an offshoot, we will be able to demonstrate an action of the affine algebra on the quantum cohomology of the moduli space of flat connections on a Riemann surface, as well as derive the Verlinde formula.
We conjecture a formula for the virtual elliptic genera of moduli spaces of rank 2 sheaves on minimal surfaces $S$ of general type. We express our conjecture in terms of the Igusa cusp form $chi_{10}$ and Borcherds type lifts of three quasi-Jacobi fo
We study complex Chern-Simons theory on a Seifert manifold $M_3$ by embedding it into string theory. We show that complex Chern-Simons theory on $M_3$ is equivalent to a topologically twisted supersymmetric theory and its partition function can be na
We prove a generalization of the Verlinde formula to fermionic rational conformal field theories. The fusion coefficients of the fermionic theory are equal to sums of fusion coefficients of its bosonic projection. In particular, fusion coefficients o
Surgery exact triangles in various 3-manifold Floer homology theories provide an important tool in studying and computing the relevant Floer homology groups. These exact triangles relate the invariants of 3-manifolds, obtained by three different Dehn
Around 1988, Floer introduced two important theories: instanton Floer homology as invariants of 3-manifolds and Lagrangian Floer homology as invariants of pairs of Lagrangians in symplectic manifolds. Soon after that, Atiyah conjectured that the two