ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of reflectionless scattering modes

260   0   0.0 ( 0 )
 نشر من قبل Chia Wei Hsu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop the theory of a special type of scattering state in which a set of asymptotic channels are chosen as inputs and the complementary set as outputs, and there is zero reflection back into the input channels. In general an infinite number of such solutions exist at discrete complex frequencies. Our results apply to linear electromagnetic and acoustic wave scattering and also to quantum scattering, in all dimensions, for arbitrary geometries including scatterers in free space, and for any choice of the input/output sets. We refer to such a state as reflection-zero (R-zero) when it occurs off the real-frequency axis and as an Reflectionless Scattering Mode (RSM) when it is tuned to a real frequency as a steady-state solution. Such reflectionless behavior requires a specific monochromatic input wavefront, given by the eigenvector of a filtered scattering matrix with eigenvalue zero. Steady-state RSMs may be realized by index tuning which do not break flux conservation or by gain-loss tuning. RSMs of flux-conserving cavities are bidirectional while those of non-flux-conserving cavities are generically unidirectional. Cavities with ${cal PT}$-symmetry have unidirectional R-zeros in complex-conjugate pairs, implying that reflectionless states naturally arise at real frequencies for small gain-loss parameter but move into the complex-frequency plane after a spontaneous ${cal PT}$-breaking transition. Numerical examples of RSMs are given for one-dimensional cavities with and without gain/loss, a ${cal PT}$ cavity, a two-dimensional multiwaveguide junction, and a two-dimensional deformed dielectric cavity in free space. We outline and implement a general technique for solving such problems, which shows promise for designing photonic structures which are perfectly impedance-matched for specific inputs, or can perfectly convert inputs from one set of modes to a complementary set.



قيم البحث

اقرأ أيضاً

Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associ ated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of [Breuer-Ryckman-Simon]. These developments parallel those recently obtained for Jacobi matrices.
We outline a recently developed theory of impedance-matching, or reflectionless excitation of arbitrary finite photonic structures in any dimension. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be po ssible, and specifies how many physical parameters must be tuned to achieve this. In the absence of geometric symmetries the tuning of at least one structural parameter will be necessary to achieve reflectionless excitation. The theory employs a recently identified set of complex-frequency solutions of the Maxwell equations as a starting point, which are defined by having zero reflection into a chosen set of input channels, and which are referred to as R-zeros. Tuning is generically necessary in order to move an R-zero to the real-frequency axis, where it becomes a physical steady-state solution, referred to as a Reflectionless Scattering Mode (RSM). Except in single-channel systems, the RSM corresponds to a particular input wavefront, and any other wavefront will generally not be reflectionless. In a structure with parity and time-reversal symmmetry or with parity-time symmetry, generically a subset of R-zeros is real, and reflectionless states exist without structural tuning. Such systems can exhibit symmetry-breaking transitions when two RSMs meet, which corresponds to a recently identified kind of exceptional point at which the shape of the reflection and transmission resonance lineshape is flattened.
We present a novel procedure to solve the Schrodinger equation, which in optics is the paraxial wave equation, with an initial multisingular vortex Gaussian beam. This initial condition has a number of singularities in a plane transversal to propagat ion embedded in a Gaussian beam. We use the scattering modes, which are solutions of the paraxial wave equation that can be combined straightforwardly to express the initial condition and therefore permit to solve the problem. To construct the scattering modes one needs to obtain a particular set of polynomials, which play an analogous role than Laguerre polynomials for Laguerre-Gaussian modes. We demonstrate here the recurrence relations needed to determine these polynomials. To stress the utility and strength of the method we solve first the problem of an initial Gaussian beam with two positive singularities and a negative one embedded in. We show that the solution permits one to obtain analytical expressions. These can used to obtain closed expressions for meaningful quantities, like the distance at which the positive and negative singularities merge, closing the loop of a vortex line. Furthermore, we present an example of calculation of an specific discrete-Gauss state, which is the solution of the diffraction of a Laguerre-Gauss state showing definite angular momentum (that is, a highly charged vortex) by a thin diffractive element showing certain discrete symmetry. We show that thereby this problem is solved in a much simpler way than using the previous procedure based in the integral Fresnel diffraction method.
We consider the reflection-transmission problem in a waveguide with obstacle. At certain frequencies, for some incident waves, intensity is perfectly transmitted and the reflected field decays exponentially at infinity. In this work, we show that suc h reflectionless modes can be characterized as eigenfunctions of an original non-selfadjoint spectral problem. In order to select ingoing waves on one side of the obstacle and outgoing waves on the other side, we use complex scalings (or Perfectly Matched Layers) with imaginary parts of different signs. We prove that the real eigenvalues of the obtained spectrum correspond either to trapped modes (or bound states in the continuum) or to reflectionless modes. Interestingly, complex eigenvalues also contain useful information on weak reflection cases. When the geometry has certain symmetries, the new spectral problem enters the class of $mathcal{PT}$-symmetric problems.
We present a quantization scheme for optical systems with absorptive losses, based on an expansion in the complete set of scattering solutions to Maxwells equations. The natural emergence of both absorptive loss and fluctuations without introducing a thermal bath is demonstrated. Our model predicts mechanisms of absorption induced squeezing and dispersion mediated photon conversion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا