ﻻ يوجد ملخص باللغة العربية
We develop the theory of a special type of scattering state in which a set of asymptotic channels are chosen as inputs and the complementary set as outputs, and there is zero reflection back into the input channels. In general an infinite number of such solutions exist at discrete complex frequencies. Our results apply to linear electromagnetic and acoustic wave scattering and also to quantum scattering, in all dimensions, for arbitrary geometries including scatterers in free space, and for any choice of the input/output sets. We refer to such a state as reflection-zero (R-zero) when it occurs off the real-frequency axis and as an Reflectionless Scattering Mode (RSM) when it is tuned to a real frequency as a steady-state solution. Such reflectionless behavior requires a specific monochromatic input wavefront, given by the eigenvector of a filtered scattering matrix with eigenvalue zero. Steady-state RSMs may be realized by index tuning which do not break flux conservation or by gain-loss tuning. RSMs of flux-conserving cavities are bidirectional while those of non-flux-conserving cavities are generically unidirectional. Cavities with ${cal PT}$-symmetry have unidirectional R-zeros in complex-conjugate pairs, implying that reflectionless states naturally arise at real frequencies for small gain-loss parameter but move into the complex-frequency plane after a spontaneous ${cal PT}$-breaking transition. Numerical examples of RSMs are given for one-dimensional cavities with and without gain/loss, a ${cal PT}$ cavity, a two-dimensional multiwaveguide junction, and a two-dimensional deformed dielectric cavity in free space. We outline and implement a general technique for solving such problems, which shows promise for designing photonic structures which are perfectly impedance-matched for specific inputs, or can perfectly convert inputs from one set of modes to a complementary set.
Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associ
We outline a recently developed theory of impedance-matching, or reflectionless excitation of arbitrary finite photonic structures in any dimension. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be po
We present a novel procedure to solve the Schrodinger equation, which in optics is the paraxial wave equation, with an initial multisingular vortex Gaussian beam. This initial condition has a number of singularities in a plane transversal to propagat
We consider the reflection-transmission problem in a waveguide with obstacle. At certain frequencies, for some incident waves, intensity is perfectly transmitted and the reflected field decays exponentially at infinity. In this work, we show that suc
We present a quantization scheme for optical systems with absorptive losses, based on an expansion in the complete set of scattering solutions to Maxwells equations. The natural emergence of both absorptive loss and fluctuations without introducing a