ترغب بنشر مسار تعليمي؟ اضغط هنا

Drag reduction in boiling Taylor-Couette turbulence

89   0   0.0 ( 0 )
 نشر من قبل Rodrigo Ezeta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We create a highly controlled lab environment-accessible to both global and local monitoring-to analyse turbulent boiling flows and in particular their shear stress in a statistically stationary state. Namely, by precisely monitoring the drag of strongly turbulent Taylor-Couette flow (the flow in between two co-axially rotating cylinders, Reynolds number $textrm{Re}approx 10^6$) during its transition from non-boiling to boiling, we show that the intuitive expectation, namely that a few volume percent of vapor bubbles would correspondingly change the global drag by a few percent, is wrong. Rather, we find that for these conditions a dramatic global drag reduction of up to 45% occurs. We connect this global result to our local observations, showing that for major drag reduction the vapor bubble deformability is crucial, corresponding to Weber numbers larger than one. We compare our findings with those for turbulent flows with gas bubbles, which obey very different physics than vapor bubbles. Nonetheless, we find remarkable similarities and explain these.



قيم البحث

اقرأ أيضاً

In this study we experimentally investigate bubbly drag reduction in a highly turbulent flow of water with dispersed air at $5.0 times 10^{5} leq text{Re} leq 1.7 times 10^{6}$ over a non-wetting surface containing micro-scale roughness. To do so, th e Taylor-Couette geometry is used, allowing for both accurate global drag and local flow measurements. The inner cylinder - coated with a rough, hydrophobic material - is rotating, whereas the smooth outer cylinder is kept stationary. The crucial control parameter is the air volume fraction $alpha$ present in the working fluid. For small volume fractions ($alpha < {4},%$), we observe that the surface roughness from the coating increases the drag. For large volume fractions of air ($alpha geq 4,%$), the drag decreases compared to the case with both the inner and outer cylinders uncoated, i.e. smooth and hydrophilic, using the same volume fraction of air. This suggests that two competing mechanisms are at place: on the one hand the roughness invokes an extension of the log-layer - resulting in an increase in drag - and on the other hand there is a drag-reducing mechanism of the hydrophobic surface interacting with the bubbly liquid. The balance between these two effects determines whether there is overall drag reduction or drag enhancement. For further increased bubble concentration $alpha = {6},%$ we find a saturation of the drag reduction effect. Our study gives guidelines for industrial applications of bubbly drag reduction in hydrophobic wall-bounded turbulent flows.
We experimentally study the influence of wall roughness on bubble drag reduction in turbulent Taylor-Couette flow, i.e. the flow between two concentric, independently rotating cylinders. We measure the drag in the system for the cases with and withou t air, and add roughness by installing transverse ribs on either one or both of the cylinders. For the smooth wall case (no ribs) and the case of ribs on the inner cylinder only, we observe strong drag reduction up to $DR=33%$ and $DR=23%$, respectively, for a void fraction of $alpha=6%$. However, with ribs mounted on both cylinders or on the outer cylinder only, the drag reduction is weak, less than $DR=11%$, and thus quite close to the trivial effect of reduced effective density. Flow visualizations show that stable turbulent Taylor vortices --- large scale vortical structures --- are induced in these two cases, i.e. the cases with ribs on the outer cylinder. These strong secondary flows move the bubbles away from the boundary layer, making the bubbles less effective than what had previously been observed for the smooth-wall case. Measurements with counter-rotating smooth cylinders, a regime in which pronounced Taylor rolls are also induced, confirm that it is really the Taylor vortices that weaken the bubble drag reduction mechanism. Our findings show that, although bubble drag reduction can indeed be effective for smooth walls, its effect can be spoiled by e.g. biofouling and omnipresent wall roughness, as the roughness can induce strong secondary flows.
We experimentally investigate the influence of alternating rough and smooth walls on bubbly drag reduction (DR). We apply rough sandpaper bands of width $s$ between $48.4,mm$ and $148.5,mm$, and roughness height $k = 695,{mu}m$, around the smooth inn er cylinder (IC) of the Twente Turbulent Taylor-Couette facility. Between sandpaper bands, the IC is left uncovered over similar width $s$, resulting in alternating rough and smooth bands, a constant pattern in axial direction. We measure the DR in water that originates from introducing air bubbles to the fluid at (shear) Reynolds numbers $textit{Re}_s$ ranging from $0.5 times 10^6$ to $1.8 times 10^6$. Results are compared to bubbly DR measurements with a completely smooth IC and an IC that is completely covered with sandpaper of the same roughness $k$. The outer cylinder is left smooth for all variations. Results are also compared to bubbly DR measurements where a smooth outer cylinder is rotating in opposite direction to the smooth IC. This counter rotation induces secondary flow structures that are very similar to those observed when the IC is composed of alternating rough and smooth bands. For the measurements with roughness, the bubbly DR is found to initially increase more strongly with $textit{Re}_s$, before levelling off to reach a value that no longer depends on $textit{Re}_s$. This is attributed to a more even axial distribution of the air bubbles, resulting from the increased turbulence intensity of the flow compared to flow over a completely smooth wall at the same $textit{Re}_s$. The air bubbles are seen to accumulate at the rough wall sections in the flow. Here, locally, the drag is largest and so the drag reducing effect of the bubbles is felt strongest. Therefore, a larger maximum value of bubbly DR is found for the alternating rough and smooth walls compared to the completely rough wall.
Recent studies have brought into question the view that at sufficiently high Reynolds number turbulence is an asymptotic state. We present the first direct observation of the decay of turbulent states in Taylor-Couette flow with lifetimes spanning fi ve orders of magnitude. We also show that there is a regime where Taylor-Couette flow shares many of the decay characteristics observed in other shear flows, including Poisson statistics and the coexistence of laminar and turbulent patches. Our data suggest that characteristic decay times increase super-exponentially with increasing Reynolds number but remain bounded in agreement with the most recent data from pipe flow and with a recent theoretical model. This suggests that, contrary to the prevailing view, turbulence in linearly stable shear flows may be generically transient.
We study periodically driven Taylor-Couette turbulence, i.e. the flow confined between two concentric, independently rotating cylinders. Here, the inner cylinder is driven sinusoidally while the outer cylinder is kept at rest (time-averaged Reynolds number is $Re_i = 5 times 10^5$). Using particle image velocimetry (PIV), we measure the velocity over a wide range of modulation periods, corresponding to a change in Womersley number in the range $15 leq Wo leq 114$. To understand how the flow responds to a given modulation, we calculate the phase delay and amplitude response of the azimuthal velocity. In agreement with earlier theoretical and numerical work, we find that for large modulation periods the system follows the given modulation of the driving, i.e. the system behaves quasi-stationary. For smaller modulation periods, the flow cannot follow the modulation, and the flow velocity responds with a phase delay and a smaller amplitude response to the given modulation. If we compare our results with numerical and theoretical results for the laminar case, we find that the scalings of the phase delay and the amplitude response are similar. However, the local response in the bulk of the flow is independent of the distance to the modulated boundary. Apparently, the turbulent mixing is strong enough to prevent the flow from having radius-dependent responses to the given modulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا