ﻻ يوجد ملخص باللغة العربية
OB associations are the prime star forming sites in galaxies. However the detailed formation process of such stellar systems still remains a mystery. In this context, identifying the presence of substructures may help tracing the footprints of their formation process. Here, we present a kinematic study of the two massive OB associations Cygnus OB2 and Carina OB1 using the precise astrometry from the Gaia Data Release 2 and radial velocities. From the parallaxes of stars, these OB associations are confirmed to be genuine stellar systems. Both Cygnus OB2 and Carina OB1 are composed of a few dense clusters and a halo which have different kinematic properties: the clusters occupy regions of 5-8 parsecs in diameter and display small dispersions in proper motion, while the halos spread over tens of parsecs with a 2-3 times larger dispersions in proper motion. This is reminiscent of the so-called line width-size relation of molecular clouds related to turbulence. Considering that the kinematics and structural features were inherited from those of their natal clouds would then imply that the formation of OB associations may result from structure formation driven by supersonic turbulence, rather than from the dynamical evolution of individual embedded clusters.
OB associations are unbound groups of young stars made prominent by their bright OB members, and have long been thought to be the expanded remnants of dense star clusters. They have been important in astrophysics for over a century thanks to their lu
The kinematic structure of the Cygnus OB2 association is investigated. No evidence of expansion or contraction is found at any scale within the region. Stars that are within $sim$ 0.5 parsecs of one another are found to have more similar velocities t
We discuss how contemporary multiwavelength observations of young OB-dominated clusters address long-standing astrophysical questions: Do clusters form rapidly or slowly with an age spread? When do clusters expand and disperse to constitute the field
Recently, several studies have shown that young, open clusters are characterised by a considerable over-abundance in their barium content. In particular, DOrazi et al. (2009) reported that in some younger clusters [Ba/Fe] can reach values as high as
We present observations of the Cygnus OB2 region obtained with the Giant Metrewave Radio Telescope (GMRT) at the frequencies of 325 MHz and 610 MHz. In this contribution we focus on the study of proplyd-like objects (also known as free-floating Evapo