ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential equations as models of deep neural networks

113   0   0.0 ( 0 )
 نشر من قبل Julius Ruseckas
 تاريخ النشر 2019
والبحث باللغة English
 تأليف Julius Ruseckas




اسأل ChatGPT حول البحث

In this work we systematically analyze general properties of differential equations used as machine learning models. We demonstrate that the gradient of the loss function with respect to to the hidden state can be considered as a generalized momentum conjugate to the hidden state, allowing application of the tools of classical mechanics. In addition, we show that not only residual networks, but also feedforward neural networks with small nonlinearities and the weights matrices deviating only slightly from identity matrices can be related to the differential equations. We propose a differential equation describing such networks and investigate its properties.



قيم البحث

اقرأ أيضاً

We perform scalable approximate inference in a continuous-depth Bayesian neural network family. In this model class, uncertainty about separate weights in each layer gives hidden units that follow a stochastic differential equation. We demonstrate gr adient-based stochastic variational inference in this infinite-parameter setting, producing arbitrarily-flexible approximate posteriors. We also derive a novel gradient estimator that approaches zero variance as the approximate posterior over weights approaches the true posterior. This approach brings continuous-depth Bayesian neural nets to a competitive comparison against discrete-depth alternatives, while inheriting the memory-efficient training and tunable precision of Neural ODEs.
Discovering the underlying behavior of complex systems is an important topic in many science and engineering disciplines. In this paper, we propose a novel neural network framework, finite difference neural networks (FDNet), to learn partial differen tial equations from data. Specifically, our proposed finite difference inspired network is designed to learn the underlying governing partial differential equations from trajectory data, and to iteratively estimate the future dynamical behavior using only a few trainable parameters. We illustrate the performance (predictive power) of our framework on the heat equation, with and without noise and/or forcing, and compare our results to the Forward Euler method. Moreover, we show the advantages of using a Hessian-Free Trust Region method to train the network.
It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference for infinite width neural networks on regression tasks by means of evaluating the corresponding GP. Recently, kernel functions which mimic multi-layer random neural networks have been developed, but only outside of a Bayesian framework. As such, previous work has not identified that these kernels can be used as covariance functions for GPs and allow fully Bayesian prediction with a deep neural network. In this work, we derive the exact equivalence between infinitely wide deep networks and GPs. We further develop a computationally efficient pipeline to compute the covariance function for these GPs. We then use the resulting GPs to perform Bayesian inference for wide deep neural networks on MNIST and CIFAR-10. We observe that trained neural network accuracy approaches that of the corresponding GP with increasing layer width, and that the GP uncertainty is strongly correlated with trained network prediction error. We further find that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite-width networks. Finally we connect the performance of these GPs to the recent theory of signal propagation in random neural networks.
Deep Gaussian processes (DGPs) have struggled for relevance in applications due to the challenges and cost associated with Bayesian inference. In this paper we propose a sparse variational approximation for DGPs for which the approximate posterior me an has the same mathematical structure as a Deep Neural Network (DNN). We make the forward pass through a DGP equivalent to a ReLU DNN by finding an interdomain transformation that represents the GP posterior mean as a sum of ReLU basis functions. This unification enables the initialisation and training of the DGP as a neural network, leveraging the well established practice in the deep learning community, and so greatly aiding the inference task. The experiments demonstrate improved accuracy and faster training compared to current DGP methods, while retaining favourable predictive uncertainties.
In recent years, there has been considerable innovation in the world of predictive methodologies. This is evident by the relative domination of machine learning approaches in various classification competitions. While these algorithms have excelled a t multivariate problems, they have remained dormant in the realm of functional data analysis. We extend notable deep learning methodologies to the domain of functional data for the purpose of classification problems. We highlight the effectiveness of our method in a number of classification applications such as classification of spectrographic data. Moreover, we demonstrate the performance of our classifier through simulation studies in which we compare our approach to the functional linear model and other conventional classification methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا