ﻻ يوجد ملخص باللغة العربية
Machine Learning (ML) is proving extremely beneficial in many healthcare applications. In pediatric oncology, retrospective studies that investigate the relationship between treatment and late adverse effects still rely on simple heuristics. To assess the effects of radiation therapy, treatment plans are typically simulated on phantoms, i.e., virtual surrogates of patient anatomy. Currently, phantoms are built according to reasonable, yet simple, human-designed criteria. This often results in a lack of individualization. We present a novel approach that combines imaging and ML to build individualized phantoms automatically. Given the features of a patient treated historically (only 2D radiographs available), and a database of 3D Computed Tomography (CT) imaging with organ segmentations and relative patient features, our approach uses ML to predict how to assemble a patient-specific phantom automatically. Experiments on 60 abdominal CTs of pediatric patients show that our approach constructs significantly more representative phantoms than using current phantom building criteria, in terms of location and shape of the abdomen and of two considered organs, the liver and the spleen. Among several ML algorithms considered, the Gene-pool Optimal Mixing Evolutionary Algorithm for Genetic Programming (GP-GOMEA) is found to deliver the best performing models, which are, moreover, transparent and interpretable mathematical expressions.
Most problems in Earth sciences aim to do inferences about the system, where accurate predictions are just a tiny part of the whole problem. Inferences mean understanding variables relations, deriving models that are physically interpretable, that ar
In the field of reproductive health, a vital aspect for the detection of male fertility issues is the analysis of human semen quality. Two factors of importance are the morphology and motility of the sperm cells. While the former describes defects in
In our experience of working with domain experts who are using todays AutoML systems, a common problem we encountered is what we call unrealistic expectations -- when users are facing a very challenging task with noisy data acquisition process, whils
Context: Conducting experiments is central to research machine learning research to benchmark, evaluate and compare learning algorithms. Consequently it is important we conduct reliable, trustworthy experiments. Objective: We investigate the incidenc
We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRI) from highly undersampled k-space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a