ﻻ يوجد ملخص باللغة العربية
Hidden monopole is a plausible dark matter candidate due to its stability, but its direct experimental search is extremely difficult due to feeble interactions with the standard model particles in the minimal form. Then, we introduce an axion, $a$, connecting the hidden monopole and the standard model particles and examine the current limits and future prospects of direct dark matter searches and beam-dump experiments. We find two parameter regions around $m_a = {cal O}(10)$ MeV, $f_a = {cal O}(10^{5})$ GeV and $m_a = {cal O}(100)$ MeV, $f_a = {cal O}(10^{4})$ GeV where monopole dark matter and the axion are respectively within the reach of the future experiments such as PICO-500 and SHiP. We also note that the hidden photons mainly produced by the axion decay contribute to dark radiation with $Delta N_{rm eff} simeq 0.6$ which can relax the $H_0$ tension.
A number of proposed and ongoing experiments search for axion dark matter with a mass nearing the limit set by small scale structure (${cal O} ( 10 ^{ - 21 } {rm eV} ) $). We consider the late universe cosmology of these models, showing that requirin
Searches for invisible Higgs decays at the Large Hadron Collider constrain dark matter Higgs-portal models, where dark matter interacts with the Standard Model fields via the Higgs boson. While these searches complement dark matter direct-detection e
We investigate a scenario where the dark matter of the Universe is made from very light hidden photons transforming under a $Z_{2}$-symmetry. In contrast to the usual situation, kinetic mixing is forbidden by the symmetry and the dark photon interact
Hidden photons are dark matter candidates motivated by theories beyond the standard model of particle physics. They mix with conventional photons, and they can be detected through the very weak electromagnetic radiation they induce at the interface b
The recent measurements of the cosmological parameter $H_0$ from the direct local observations and the inferred value from the Cosmic Microwave Background show $sim 4 sigma$ discrepancy. This may indicate new physics beyond the standard $Lambda$CDM.