ﻻ يوجد ملخص باللغة العربية
This article is to understand the critical values of $L$-functions $L(s,Piotimes chi)$ and to establish the relation of the relevant global periods at the critical places. Here $Pi$ is an irreducible regular algebraic cuspidal automorphic representation of $mathrm{GL}_{2n}(mathbb A)$ of symplectic type and $chi$ is a finite order automorphic character of $mathrm{GL}_1(mathbb A)$, with $mathbb A$ is the ring of adeles of a number field $mathrm k$.
We prove the Archimedean period relations for Rankin-Selberg convolutions for $mathrm{GL}(n)times mathrm{GL}(n-1)$. This implies the period relations for critical values of the Rankin-Selberg L-functions for $mathrm{GL}(n)times mathrm{GL}(n-1)$.
Period polynomials have long been fruitful tools for the study of values of $L$-functions in the context of major outstanding conjectures. In this paper, we survey some facets of this study from the perspective of Eichler cohomology. We discuss ways
In this brief essay a construction of the $2$-variable L-function of Langlands is sketched in terms of monomial resolutions of admissible representations of reductive locally $p$-adic Lie groups.
Let $pi$ be an irreducible cuspidal automorphic representation of a quasi-split unitary group ${rm U}_{mathfrak n}$ defined over a number field $F$. Under the assumption that $pi$ has a generic global Arthur parameter, we establish the non-vanishing
In [Ar13], Arthur classifies the automorphic discrete spectrum of symplectic groups up to global Arthur packets, based on the theory of endoscopy. It is an interesting and basic question to ask: which global Arthur packets contain no cuspidal automor