Machine-learning (ML) algorithms or models, especially deep neural networks (DNNs), have shown significant promise in several areas. However, researchers have recently demonstrated that ML algorithms, especially DNNs, are vulnerable to adversarial examples (slightly perturbed samples that cause misclassification). The existence of adversarial examples has hindered the deployment of ML algorithms in safety-critical sectors, such as security. Several defenses for adversarial examples exist in the literature. One of the important classes of defenses are manifold-based defenses, where a sample is ``pulled back into the data manifold before classifying. These defenses rely on the assumption that data lie in a manifold of a lower dimension than the input space. These defenses use a generative model to approximate the input distribution. In this paper, we investigate the following question: do the generative models used in manifold-based defenses need to be topology-aware? We suggest the answer is yes, and we provide theoretical and empirical evidence to support our claim.